DT9847 Series
User’s Manual
Trademark and Copyright Information

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

© 2019 Measurement Computing Corporation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Measurement Computing Corporation.

Notice

Measurement Computing Corporation does not authorize any Measurement Computing Corporation product for use in life support systems and/or devices without prior written consent from Measurement Computing Corporation. Life support devices/systems are devices or systems that, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corporation products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.
Radio and Television Interference

This equipment has been tested and found to comply with CISPR EN55022 Class A and EN61000-6-1 requirements and also with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Changes or modifications to this equipment not expressly approved by Data Translation could void your authority to operate the equipment under Part 15 of the FCC Rules.

Note: This product was verified to meet FCC requirements under test conditions that included use of shielded cables and connectors between system components. It is important that you use shielded cables and connectors to reduce the possibility of causing interference to radio, television, and other electronic devices.

Canadian Department of Communications Statement

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n’émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la class A prescrites dans le Règlement sur le brouillage radioélectrique édicté par le Ministère des Communications du Canada.
Table of Contents

About this Manual ... 9
 Intended Audience .. 9
 How this Manual is Organized .. 9
 Conventions Used in this Manual 10
 Related Information .. 10
 Where To Get Help ... 11

Chapter 1: Overview .. 13
 Hardware Features .. 14
 Key Features of the DT9847-1-1 15
 Key Features of the DT9847-2-2 16
 Key Features of the DT9847-3-1 17
 Supported Software .. 18
 Supported Accessories ... 21
 Getting Started Procedure .. 23

Chapter 2: Setting Up and Installing the Module 27
 Unpacking ... 29
 System Requirements .. 30
 Applying Power to the Module ... 31
 Attaching Modules to the Computer 32
 Connecting Directly to the USB Ports 32
 Connecting to an Expansion Hub 34
 Configuring the DT9847 Series Device Driver 36

Chapter 3: Wiring Signals ... 37
 Preparing to Wire Signals ... 39
 Wiring Recommendations ... 39
 Warm-Up Time ... 39
 Wiring Signals to the Module .. 39
 Connecting Analog Input Signals 40
 Connecting an Analog Output Signal 41
 Connecting Digital I/O Signals 43

Chapter 4: Verifying the Operation of a Module 47
 Select the Device ... 49
 Acquire Data from an Analog Output Channel 52
 Configure the Analog Output Settings 52
 Configure the Analog Input Channel 53
 Configure the Recording Settings 55
Configure the Acquisition Settings ... 56
Start the Operation ... 57

Chapter 5: Principles of Operation ... 61
Analog Input Features .. 64
Analog Input Channels ... 64
Input Ranges and Gains .. 64
IEPE Functions ... 65
Input Resolution .. 65
Input Clock Source .. 65
 Configuration Delay .. 66
Analog Input Conversion Modes ... 66
 Single-Value Operations ... 66
 Single-Values Operations ... 67
 Continuous Scan Mode .. 67
Input Triggers .. 69
 Start Trigger Sources ... 69
 Reference Trigger Sources ... 70
Data Format and Transfer .. 71
Error Conditions ... 71
Analog Output Features ... 72
Analog Output Channels .. 72
Output Ranges and Gains ... 72
Output Resolution ... 72
Output Clocks .. 72
Output Conversion Modes .. 73
 Single-Value Mode .. 73
 Waveform Generation Mode .. 73
 Continuous Analog Output Operations ... 74
Output Trigger ... 75
Data Format and Transfer .. 76
Error Conditions ... 76
Digital I/O Features ... 77
Digital I/O Lines ... 77
Operation Modes ... 77
Triggering Acquisition on Multiple Modules ... 78
Synchronizing Acquisition on Multiple DT9847 Series Modules 79
 Triggering DT9847 and DT9837 Series Modules Using the Sync Bus 81
Chapter 6: Supported Device Driver Capabilities

- Data Flow and Operation Options .. 87
- Buffering .. 88
- Triggered Scan Mode .. 88
- Data Encoding ... 88
- Channels .. 89
- Gain .. 89
- Ranges .. 90
- Resolution .. 90
- Current and Resistance Support .. 90
- Thermocouple, RTD, and Thermistor Support .. 91
- IEPE Support ... 92
- Bridge and Strain Gage Support ... 92
- Start Triggers ... 93
- Reference Triggers ... 94
- Clocks .. 95
- Counter/Timers ... 96
- Tachometers ... 97

Chapter 7: Troubleshooting

- General Checklist .. 100
- Technical Support .. 102
- If Your Module Needs Factory Service ... 103

Chapter 8: Calibration

- Using the Calibration Utility .. 107
- Calibrating the Analog Input Subsystem .. 108
 - Warming up the Module ... 108
 - Connecting a Precision Voltage Source ... 108
 - Using the Auto-Calibration Procedure ... 108
 - Using the Manual Calibration Procedure ... 109
- Calibrating the Analog Output Subsystem .. 110

Appendix A: Specifications

- Analog Input Specifications ... 112
- Analog Output Specifications ... 117
- Digital I/O Specifications ... 119
- Trigger Specifications ... 120
- Master Oscillator Specifications ... 121
- Power, Physical, and Environmental Specifications 122
- Regulatory Specifications ... 123
- Connector Specifications ... 124
- External Power Supply Specifications ... 125
Appendix B: Connector Pin Assignments and LED Status Indicators 127
Digital I/O and External Trigger Connector .. 128
External USB Connector ... 129
External Power Connector ... 130
STP15 Screw Terminal Panel ... 131
LED Status Indicators ... 132

Appendix C: Powering OEM Modules .. 133
Powering the DT9847-1-1-OEM Module .. 134
Powering the DT9847-2-2-OEM or DT9847-3-1-OEM Module 136

Appendix D: Register-Level Programming ... 137
Writing to the EEPROM Register ... 138

Index ... 141
About this Manual

The first part of this manual describes how to install and set up your DT9847 Series module and device driver, and verify that your module is working properly.

The second part of this manual describes the features of the DT9847 Series modules, the capabilities of the DT9847 Series Device Driver, and how to program the DT9847 module using the DT-Open Layers for .NET Class Library™ software. Troubleshooting information is also provided.

Note: For more information on the class library, refer to the DT-Open Layers for .NET Class Library User’s Manual. If you are using the DataAcq SDK or a software application to program your device, refer to the documentation for that software for more information.

Intended Audience

This document is intended for engineers, scientists, technicians, or others responsible for using and/or programming a DT9847 Series module for data acquisition operations in the Microsoft® Windows Vista, Windows 7, Windows 8, or Windows 10 operating system. It is assumed that you have some familiarity with data acquisition principles and that you understand your application.

How this Manual is Organized

This manual is organized as follows:

• Chapter 1, “Overview,” describes the major features of the DT9847 Series module, as well as the supported software and accessories for the modules.

• Chapter 2, “Setting Up and Installing the Module,” describes how to install a DT9847 Series module, how to apply power to the module, and how to configure the DT9847 Series Device Driver.

• Chapter 3, “Wiring Signals,” describes how to wire signals to a DT9847 Series module.

• Chapter 4, “Verifying the Operation of a Module,” describes how to verify the operation of a DT9847 Series module with the QuickDAQ application.

• Chapter 5, “Principles of Operation,” describes all of the features of the DT9847 Series module and how to access them in your application.

• Chapter 6, “Supported Device Driver Capabilities,” lists the data acquisition subsystems and the associated features accessible using the DT9847 Series Device Driver.

• Chapter 7, “Troubleshooting,” provides information that you can use to resolve problems with the DT9847 Series module and DT9847 Series Device Driver, should they occur.

• Chapter 8, “Calibration,” describes how to calibrate the analog I/O circuitry of the DT9847 module.
• Appendix A, “Specifications,” lists the specifications of the DT9847 Series module.
• Appendix B, “Connector Pin Assignments and LED Status Indicators,” lists the pin assignments of the connectors on the DT9847 Series module, the screw terminal assignments of the STP15 screw terminal panel, and describes the LED status indicators on the DT9847 Series module.
• Appendix C, “Powering OEM Modules,” describes how to apply power to OEM modules.
• Appendix D, “Register-Level Programming,” describes how to write to the registers of the DT9847 Series modules to change the default settings that are defined in the Open Layers Control Panel programmatically.
• An index completes this manual.

Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information or information that requires special emphasis, cautions provide information to help you avoid losing data or damaging your equipment, and warnings provide information to help you avoid catastrophic damage to yourself or your equipment.
• Items that you select or type are shown in bold.

Related Information

Refer to the following documents for more information on using the DT9847 Series module:

• QuickDAQ User’s Manual (UM-24774). This manual describes how to create a QuickDAQ application to acquire and analyze data from a DT-Open Layers data acquisition module.
• DT-Open Layers for .NET User’s Manual (UM-22161). For programmers who are developing their own application programs using Visual C# or Visual Basic .NET, this manual describes how to use the DT-Open Layers for .NET Class Library to access the capabilities of Data Translation data acquisition devices.
• DataAcq SDK User’s Manual (UM-18326). For programmers who are developing their own application programs using the Microsoft C compiler, this manual describes how to use the DT-Open Layers DataAcq SDK™ to access the capabilities of Data Translation data acquisition devices.
• LV-Link Online Help. This help file describes how to use LV-Link™ with the LabVIEW™ graphical programming language to access the capabilities of Data Translation data acquisition devices.
• Microsoft Windows 7, Windows 8, or Windows 10 documentation.
• USB web site (http://www.usb.org)
Where To Get Help

Should you run into problems installing or using a DT9847 Series module, the Technical Support Department is available to provide technical assistance. Refer to Chapter 7 for more information. If you are outside the United States or Canada, call your local distributor, whose number is listed on our web site www.mccdaq.com.
Overview

Hardware Features .. 14
Supported Software .. 18
Supported Accessories .. 21
Getting Started Procedure .. 23
Hardware Features

DT9847 Series modules are high-accuracy, dynamic signal acquisition modules for the USB (Ver. 2.0 or Ver. 1.1) bus. These modules are ideal for acoustic measurements due to their AC coupling and frequency characteristics. Figure 1 shows the DT9847-3-1 module.

![Figure 1: DT9847-3-1 Module](image)

Table 1 lists the major differences between the modules.

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9847-1-1</th>
<th>DT9847-2-2</th>
<th>DT9847-3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Analog Input Channels</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Number of Analog Output Channels</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Power</td>
<td>USB Power<sup>a</sup></td>
<td>External Power<sup>b</sup></td>
<td>External Power<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Using USB-Y cable.
^b Using a 5 V to 24 V external power supply at 5 W.
Key Features of the DT9847-1-1

The key features of the DT9847-1-1 module are as follows:

- Simultaneous analog input and waveform analog output operations
- Operates on internal USB power using a USB-Y cable
- Analog input subsystem:
 - One 24-bit A/D converter
 - Throughput rate from 1 kSamples/s to 216 kSamples/s
 - Input range of ±10 V with software-selectable gains of 1 and 10 for an effective input range of ±10 V and ±1 V
 - Support for IEPE (Integrated Electronic Piezoelectric) inputs, including use of a 4 mA current source with 18 V compliance voltage for AC or DC coupling
 - Supports a start trigger for acquiring pre-trigger samples and a reference trigger for acquiring post-trigger samples. You can specify the number of post-trigger samples to acquire before stopping the operation.
 - For the start trigger, supports a software-programmable trigger source (software, external digital trigger, or a positive- or negative-going analog threshold trigger. For the threshold trigger, you can program the threshold value from −10 V to +10 V.
 - For the reference trigger, supports an external digital trigger or a positive- or negative-going analog threshold trigger. You can program the threshold value from −10 V to +10 V.
- Analog output subsystem:
 - One 32-bit D/A converter
 - Single value, waveform, and continuous streaming output
 - Programmable output rate from 30 kSamples/s to 216 kSamples/s
 - Output range of ±3 V or ±10 V, software-programmable
 - Software-programmable trigger source (software trigger or external digital trigger) to start the analog output operation
- Internal clock source (shared between the analog input and analog output subsystems)
- Four digital input lines and 4 digital output lines
- Sync Bus (RJ45) connector for synchronizing acquisition on up to four DT9847 Series modules
Key Features of the DT9847-2-2

The key hardware features of the DT9847-2-2 module are as follows:

- Simultaneous analog input and analog output operations (continuous or waveform mode)
- Operates on external USB power
- Analog input subsystem:
 - Two, simultaneous 24-bit A/D converters
 - Throughput rate from 1 kSamples/s to 216 kSamples/s for simultaneous, high-resolution measurements
 - Input range of ±10 V with software-selectable gains of 1 and 10 for an effective input range of ±10 V and ±1 V
 - Support for IEPE (Integrated Electronic Piezoelectric) inputs, including use of a 4 mA current source with 18 V compliance voltage for AC or DC coupling
 - Supports a start trigger for acquiring pre-trigger samples and a reference trigger for acquiring post-trigger samples. You can specify the number of post-trigger samples to acquire before stopping the operation.
 - For the start trigger, supports a software-programmable trigger source (software, external digital trigger, or a positive- or negative-going analog threshold trigger on any of the analog input channels). For the threshold trigger, you can program the threshold value from –10 V to +10 V.
 - For the reference trigger, supports an external digital trigger or a positive- or negative-going analog threshold trigger on any of the analog input channels. You can program the threshold value from –10 V to +10 V.
- Analog output subsystem:
 - Two 32-bit D/A converters
 - Single value, waveform, and continuous streaming output
 - Programmable output rate from 30 kSamples/s to 216 kSamples/s
 - Output range of ±3 V or ±10 V, software programmable
 - Software-programmable trigger source (software trigger or external digital trigger) to start the analog output operation
- Internal clock source (shared between the analog input and analog output subsystems)
- Sync Bus (RJ45) connector for synchronizing acquisition on up to four DT9847 Series modules
- Requires use of an external +5 VDC to +24 VDC power supply
Key Features of the DT9847-3-1

The key hardware features of the DT9847-3-1 module are as follows:

• Simultaneous analog input and analog output operations (continuous or waveform mode)

• Operates on external USB power

• Analog input subsystem:
 – Three, simultaneous 24-bit A/D converters
 – Throughput rate from 1 kSamples/s to 216 kSamples/s for simultaneous, high-resolution measurements
 – Input range of ±10 V with software-selectable gains of 1 and 10 for an effective input range of ±10 V and ±1 V
 – Support for IEPE (Integrated Electronic Piezoelectric) inputs, including use of a 4 mA current source with 18 V compliance voltage for AC or DC coupling
 – Supports a start trigger for acquiring pre-trigger samples and a reference trigger for acquiring post-trigger samples. You can specify the number of post-trigger samples to acquire before stopping the operation.
 – For the start trigger, supports a software-programmable trigger source (software, external digital trigger, or a positive- or negative-going analog threshold trigger on any of the analog input channels). For the threshold trigger, you can program the threshold value from –10 V to +10 V.
 – For the reference trigger, supports an external digital trigger or a positive- or negative-going analog threshold trigger on any of the analog input channels. You can program the threshold value from –10 V to +10 V.

• Analog output subsystem:
 – One 32-bit D/A converter
 – Single value, waveform, and continuous streaming output
 – Programmable output rate from 30 kSamples/s to 216 kSamples/s
 – Output range of ±3 V or ±10 V, software programmable
 – Software-programmable trigger source (software trigger or external digital trigger) to start the analog output operation

• Internal clock source (shared between the analog input and analog output subsystems)

• Sync Bus (RJ45) connector for synchronizing acquisition on up to four DT9847 Series modules

• Requires use of an external +5 VDC to +24 VDC power supply
Chapter 1

Supported Software

The DT Omni installer includes the following software for use with the DT9847 Series modules:

- **DT9847 Series Device Driver** – The DT9847 Series Device Driver allows you to use a DT9847 Series module with any of the supported software packages or utilities.

- **DT9847 Series Calibration Utility** – This utility, described in Chapter 8 starting on page 105, allows you to calibrate the analog input and analog output circuitry of a DT9847 Series module.

- **QuickDAQ Base Version** – The base version of QuickDAQ is free-of-charge and allows you to acquire and analyze data from all Data Translation USB and Ethernet devices, except the DT9841 Series, DT9817, DT9835, and DT9853/54. Using the base version of QuickDAQ, you can perform the following functions:
 - Discover and select your devices.
 - Configure all input channel settings for the attached sensors.
 - Load/save multiple hardware configurations.
 - Generate output stimuli (fixed waveforms, swept sine waves, or noise signals).
 - On each supported data acquisition device, acquire data from all channels supported in the input channel list.
 - Choose to acquire data continuously or for a specified duration.
 - Choose software or triggered acquisition.
 - Log acquired data to disk in an .hpf file.
 - Display acquired data during acquisition in either a digital display using the Channel Display window or as a waveform in the Channel Plot window.
 - Choose linear or logarithmic scaling for the horizontal and vertical axes.
 - View statistics about the acquired data, including the minimum, maximum, and mean values and the standard deviation in the Statistics window.
 - Export time data to a .csv or .txt file; you can open the recorded data in Microsoft Excel® for further analysis.
 - Read a previously recorded .hpf data file.
 - Customize many aspects of the acquisition, display, and recording functions to suit your needs, including the acquisition duration, sampling frequency, trigger settings, filter type, and temperature units to use.
• **QuickDAQ FFT Analysis Option** – When enabled with a purchased license key, the QuickDAQ FFT Analysis option includes all the features of the QuickDAQ Base version plus basic FFT analysis features, including the following:
 - The ability to switch between the Data Logger time-based interface and the FFT Analyzer block/average-based interface.
 - Supports software, freerun, or triggered acquisition with accept and reject controls for impact testing applications.
 - Allows you to perform single-channel FFT (Fast Fourier Transform) operations, including AutoSpectrum, Spectrum, and Power Spectral Density, on the acquired analog input data. You can configure a number of parameters for the FFT, including the FFT size, windowing type, averaging type, integration type, and so on.
 - Allows you to display frequency-domain data as amplitude or phase.
 - Supports dB or linear scaling with RMS (root mean squared), peak, and peak-to-peak scaling options.
 - Supports linear or exponential averaging with RMS, vector, and peak hold averaging options.
 - Supports windowed time channels.
 - Supports the following response window types: Hanning, Hamming, Bartlett, Blackman, Blackman Harris, and Flat top.
 - Supports the ability to lock the waveform output to the analysis frame time.
 - Allows you to configure and view dynamic performance statistics, including the input below full-scale (IBF), total harmonic distortion (THD), spurious free dynamic range (SFDR), signal-to-noise and distortion ratio (SINAD), signal-to-noise ratio (SNR), and the effective number of bits (ENOB), for selected time-domain channels in the Statistics window.
 - Supports digital IIR (infinite impulse response) filters.

• **QuickDAQ Advanced FFT Analysis Option** – When enabled with a purchased software license, the QuickDAQ Advanced FFT Analysis option includes all the features of the QuickDAQ Base version with the FFT Analysis option plus advanced FFT analysis features, including the following:
 - Allows you to designate a channel as a Reference or Response channel.
 - Allows you to perform two-channel FFT analysis functions, including Frequency Response Functions (Inertance, Mobility, Compliance, Apparent Mass, Impedance, Dynamic Stiffness, or custom FRF) with H1, H2, or H3 estimator types, Cross-Spectrum, Cross Power Spectral Density, Coherence, and Coherent Output Power.
 - Supports the Exponential response window type.
 - Supports the following reference window types: Hanning, Hamming, Bartlett, Blackman, Blackman Harris, FlatTop, Exponential, Force, and Cosine Taper windows.
 - Supports real, imaginary, and Nyquist display functions.
 - Allows you to save data in the .uff file format.
• **Quick DataAcq application** – The Quick DataAcq application provides a quick way to get up and running using a DT9847 Series module. Using this application, you can verify key features of the modules, display data on the screen, and save data to disk. (Note that this application does not support configuring AC/DC coupling or the excitation current source for IEPE inputs.)

• **DT-Open Layers for .NET Class Library** – Use this class library if you want to use Visual C# or Visual Basic for .NET to develop your own application software for a DT9847 Series module using Visual Studio 2003-2012; the class library complies with the DT-Open Layers standard.

• **DataAcq SDK** – Use the Data Acq SDK if you want to use Visual Studio 6.0 and Microsoft C or C++ to develop your own application software for a DT9847 Series module using Windows Vista, Windows 7, or Windows 8; the DataAcq SDK complies with the DT-Open Layers standard.

• **DAQ Adaptor for MATLAB** – A link to the DAQ Adaptor for MATLAB is included from the DT Omni installer. Data Translation’s DAQ Adaptor provides an interface between the MATLAB Data Acquisition (DAQ) subsystem from The MathWorks and Data Translation’s DT-Open Layers architecture.

• **LV-Link** – A link to LV-Link is included from the DT Omni installer. Use LV-Link if you want to use the LabVIEW graphical programming language to access the capabilities of the DT9847 Series module.

Refer to the web site www.mccdaq.com for information about selecting the right software package for your needs.
Supported Accessories

The following optional accessories are available for the DT9847 Series:

- **STP15 screw terminal panel** – A screw terminal panel that accepts digital input signals and an external trigger input signal and provides connections for digital output signals.

 The 15-pin, 2-meter, EP337 cable is included with the STP15 screw terminal panel. The EP337 cable allows you to attach the STP15 screw terminal panel to the Digital I/O and External Trigger connector on a DT9847 Series module.

 Figure 3 shows the STP15 and EP337 cable.
• **EP386 panel** – The EP388 panel, shown in Figure 3, contains four RJ45 connectors that are wired in parallel, making it useful when attaching up to four DT9847 Series modules together using the Sync Bus connector. Refer to page 79 for more information on using this panel.

![Figure 3: EP386 Panel](image)

• **BNC DIN Rail Kit** – The BNC DIN Rail Kit, shown in Figure 4, allows you to mount USB modules that are packaged in metal boxes in a DIN rail. The kit includes mounting clips, screws, and instructions. The rail is not included.

![Figure 4: BNC DIN Rail Kit](image)
The flow diagram shown in Figure 5 illustrates the steps needed to get started using a DT9847 Series module. This diagram is repeated in each Getting Started chapter; the shaded area in the diagram shows you where you are in the getting started procedure.
Part 1: Getting Started
Setting Up and Installing the Module

Unpacking ... 29
System Requirements .. 30
Applying Power to the Module 31
Attaching Modules to the Computer 32
Configuring the DT9847 Series Device Driver 36
Set Up and Install the Module (this chapter)

Wire Signals
(see Chapter 3 starting on page 37)

Verify the Operation of the Module
(see Chapter 4 starting on page 47)
Unpacking

Open the shipping box and verify that the following items are present:

- DT9847-1-1, DT9847-1-1-OEM, DT9847-2-2, DT9847-2-2-OEM, DT9847-3-1, or DT9847-3-1-OEM module

- If you ordered a DT9847-1-1 or DT9847-1-1-OEM module, the EP399 USB-Y cable is included. Optionally, you can use a +5 V external power supply (not included) to power the DT9847-1-1-OEM module.

- If you ordered a DT9847-2-2 or DT9847-3-1 module, the EP365 USB cable and EP394 +5 V external power supply are included.

- If you ordered a DT9847-2-2-OEM or DT9847-3-1-OEM module, the EP365 USB cable is included. To power the module, you must use a 5 V to 24 V external power supply (not included).

If an item is missing or damaged, contact Data Translation. If you are in the United States, call the Customer Service Department at (508) 956-5100. An application engineer will guide you through the appropriate steps for replacing missing or damaged items. If you are located outside the United States, call your local distributor (see www.mccdaq.com for more information).

Note: The DT9847 Series modules are factory-calibrated. If you decide that you want to recalibrate the analog input or analog output circuitry, refer to the instructions in Chapter 8.
System Requirements

For reliable operation, ensure that your computer meets the following system requirements:

- Processor: Pentium 4/M or equivalent
- RAM: 1 GB
- Screen Resolution: 1024 x 768 pixels
- Disk Space: 4 GB
Applying Power to the Module

The DT9847-1-1 module runs on USB power and does not use an external power supply. The DT9847-2-2 and DT9847-3-1 modules require an external power supply and are shipped with an EP394 +5V power supply and cable.

Note: If you are using the OEM version of a DT9847 Series module, refer to Appendix C starting on page 133 for information on powering the module.

To apply power to the module, do the following:

1. Connect the EP394 +5 V power supply to the external power connector on the DT9847 Series module. Refer to Figure 6.

![Figure 6: Attaching a +5 V Power Supply to the DT9847 Series Module](image)

2. Plug the power supply into a wall outlet.
Attaching Modules to the Computer

This section describes how to attach a DT9847 Series module to the host computer.

Note: Most computers have several USB ports that allow direct connection to USB devices. If your application requires more DT9847 Series modules than you have USB ports for, you can expand the number of USB devices attached to a single USB port by using expansion hubs. For more information, refer to page 34.

You can unplug a module, then plug it in again, if you wish, without causing damage. This process is called hot-swapping. Your application may take a few seconds to recognize a module once it is plugged back in.

The DT9847 Series modules use less than 500 mA; therefore, they do not require an external power supply.

You must install the device driver for your module before connecting the module(s) to the host computer. Run the DT Omni software to install the device driver and other software for the module.

Connecting Directly to the USB Ports

To connect a DT9847 Series module directly to a USB port on your computer, perform the following steps:

1. Attach one end of the USB cable to the USB port on the module and the other end to the USB port on your host computer.

 If you are using the DT9847-1-1, use the EP399 USB-Y cable to connect the module to two USB ports on the host computer, as shown in Figure 7.
Once the module is connected to the host computer, the operating system automatically detects the USB module and starts the Found New Hardware wizard.

2. **For Windows Vista:**

 a. Click **Locate and install driver software (recommended)**.

 The popup message “Windows needs your permission to continue” appears.

 b. Click **Continue**.

 The Windows Security dialog box appears.

 c. Click **Install this driver software anyway**.

 Note: Windows 7, Windows 8, and Windows 10 find the device automatically.

3. Repeat these steps to attach another DT9847 Series module to the host computer, if desired.
Note: Once you have connected your module to the host computer, power is turned on to the module when your application program opens the module. The USB LED on the module turns green to indicate that power is turned on.

Power is turned off to the module when your application program terminates its connection to the module.

Connecting to an Expansion Hub

Expansion hubs are powered by their own external power supply. The practical number of DT9847 Series modules that you can connect to a single USB port depends on the throughput you want to achieve.

To connect multiple DT9847 Series modules to an expansion hub, do the following:

1. Attach one end of the USB cable to the module and the other end of the USB cable to an expansion hub.

 If you are using the DT9847-1-1, use the EP399 USB-Y cable to connect the module to two USB ports on the expansion hub, as shown in Figure 8.

![Figure 8: Attaching Multiple DT9847-1-1 Modules Using Expansion Hubs](image)

2. Connect the power supply for the expansion hub to an external power supply.

3. Connect the expansion hub to the USB port on the host computer using another USB cable. Figure 9 shows how to attach DT9847-2-2 and DT9847-3-1 modules to an expansion hub.

 The operating system automatically detects the USB module and starts the Found New Hardware wizard.
4. For Windows Vista:
 a. Click Locate and install driver software (recommended).
 The popup message "Windows needs your permission to continue” appears.
 b. Click Continue.
 The Windows Security dialog box appears.
 c. Click Install this driver software anyway.

 Note: Windows 7, Windows 8, and Windows 10 find the device automatically.

5. Repeat these steps until you have attached the number of expansion hubs and modules that you require.
 The operating system automatically detects the USB devices as they are installed.

 Note: Once you have connected your module to the host computer, power is turned on to the module when your application program opens a connection to the module. The LED on the module turns green to indicate that power is turned on.

 Power is turned off to the module when your application program terminates its connection to the module.
Configuring the DT9847 Series Device Driver

Note: In Windows, you must have administrator privileges to run the Open Layers Control Panel. When you double-click the Open Layers Control Panel icon, you may see the Program Compatibility Assistant. If you do, select **Open the control panel using recommended settings.** You may also see a Windows message asking you if you want to run the Open Layers Control Panel as a "legacy CPL elevated." If you get this message, click **Yes.**

If you do not get this message and have trouble making changes in the Open Layers Control Panel, right click the DTOLCPL.CPL file and select **Run as administrator.** By default, this file is installed in the following location:

Windows (32-bit)
C:\Windows\System32\Dtolcpl.cpl

Windows (64-bit)
C:\Windows\SysWOW64\Dtolcpl.cpl

To configure the device driver for a DT9847 Series module, do the following:

1. If you have not already done so, power up the host computer and all peripherals.
2. From the Windows Start menu, select **Settings|Control Panel.**
3. From the Control Panel, double-click **Open Layers Control Panel.** The Data Acquisition Control Panel dialog box appears.
4. If you want to rename the module, click the name of the module that you want to rename, click **Edit Name,** enter a new name for the module, and then click **OK.** The name is used to identify the module in all subsequent applications.
5. Select the module that you want to configure, and then click **Advanced.** The Measurement Options dialog box appears.
6. For the Coupling type, select **AC** for AC coupling or **DC** for DC coupling for each analog input channel.
7. For the Current Source, select **Enabled** to enable the internal excitation current source or **Disabled** to disable the internal excitation current source for each analog input channel.

Note: If you enable the use of the internal excitation current source, it is recommended that you choose AC coupling. Refer to page 40 for more information on wiring IEPE inputs.

8. When you are finished, click **OK** to close the Measurement Options dialog box.
9. Repeat steps 4 to 8 for the other modules that you want to configure.
10. When you are finished configuring the modules, click **Close** to close the Control Panel.
Wiring Signals

Preparing to Wire Signals ... 39
Connecting Analog Input Signals .. 40
Connecting an Analog Output Signal ... 41
Connecting Digital I/O Signals ... 43
Set Up and Install the Module (see Chapter 2 starting on page 27)

Wire Signals (this chapter)

Verify the Operation of the Module (see Chapter 4 starting on page 47)
Preparing to Wire Signals

This section provides recommendations and information about wiring signals to a DT9847 Series module.

Wiring Recommendations

Keep the following recommendations in mind when wiring signals to a DT9847 Series module:

- Follow standard ESD procedures when wiring signals to the module.
- Separate power and signal lines by using physically different wiring paths or conduits.
- To avoid noise, do not locate the module and cabling next to sources that produce high electromagnetic fields, such as large electric motors, power lines, solenoids, and electric arcs, unless the signals are enclosed in a mumetal shield.
- Prevent electrostatic discharge to the I/O while the module is operational.
- Connect all unused analog input channels to analog ground.

Warm-Up Time

The DT9847 Series is ideal for acoustic measurements due to its AC coupling and frequency characteristics. It is not designed for DC stability; therefore, ensure that you allow the module to warm up for 15 minutes before use.

Wiring Signals to the Module

Figure 10 shows the connectors on the DT9847-3-1 module. Note that the DT9847 has only one analog input connector and one analog output connector, while the DT9847-2-2 has two analog input connectors and two analog output connectors, and the DT9847-3-1 has three analog input connectors and one analog output connector. The remaining sections of this chapter describe how to attach signals to these connectors.
Connecting Analog Input Signals

For the DT9847-1-1 module, you can connect one analog input signal (or IEPE sensor) to the BNC connector on the module. For the DT9847-2-2 module, you can connect up to two analog input signals (or IEPE sensors) to the BNC connectors on the module. For the DT9847-3-1 module, you can connect up to three analog input signals (or IEPE sensors) to the BNC connectors on the module. Internally, these signals are connected in single-ended mode. The DT9847 Series modules support an input signal range of ±10 V (using a gain of 1) or ±1 V (using a gain of 10).

Note: If you enable the use of the internal excitation current source for IEPE inputs, it is recommended that you choose AC coupling. Refer to page 64 for more information on IEPE inputs.

Figure 11 shows how to connect an analog input signal (channel 0, in this case) to a BNC connector on the DT9847 Series module.
Connecting an Analog Output Signal

The DT9847-1-1 and DT9847-3-1 modules provide one analog output channel. The DT9847-2-2 modules provide two analog input channels. The output channels have an output range of ±3 V.

Figure 12 shows how to connect an analog output signal to the DT9847-1-1 or DT9847-3-1 module.

Figure 12: Connecting an Analog Output Signal to the DT9847-1-1 or DT9847-3-1 Module

Figure 13 shows how to connect analog output signals to the DT9847-2-1 module.
Chapter 3

Figure 13: Connecting Analog Output Signals to the DT9847-2-2 Module

Note that the connectors automatically connect the Analog Ground signal appropriately.
Connecting Digital I/O Signals

Figure 14 shows the layout of the 15-pin Digital I/O and External Trigger connector on the DT9847 Series modules.

![Figure 14: Layout of the Digital I/O and External Trigger Connector](image)

To make wiring easier, connect the STP15 screw terminal panel to the Digital I/O and External Trigger connector on the DT9847 module as shown in Figure 15.

![Figure 15: Connecting the STP15 to the DT9847 Series Module](image)

The STP15 contains one 15-pin connector and two screw terminal blocks (TB1 and TB2). The 15-pin connector provides access to the signals from the Digital I/O and External Trigger connector on the DT9847 module. Figure 16 shows the layout of the STP15 and lists the screw terminal assignments.
IN refers to digital input signals, OUT refers to digital output signals, DGND refers to digital ground signals, and TRIGGER refers to the external trigger signal. STROBE and +5 V are not used on the DT9847 Series modules.

Figure 16: Layout of the STP15 Screw Terminal Panel

These signals are not used on the DT9847 Series modules.

Figure 17 shows how to connect digital input signals (lines 0 and 1, in this case) to terminal block TB1 of the STP15 screw terminal panel.

Figure 17: Connecting Digital Inputs to the STP15 Screw Terminal Panel
Figure 18 shows how to connect a digital output (line 0, in this case) to terminal block TB2 of the STP15 screw terminal panel.

The output current is determined using the following equation:

\[
Current_{Out} = \frac{Voltage_{Out}}{R_{Internal} + R_{External}}
\]

In this example, if the maximum output voltage is 3.3 V, the internal resistor is 100 \(\Omega \) and the external resistor is 500 \(\Omega \), the maximum output current is 5.5 mA. Using the minimum output voltage of 2.0 V with the same resistor values, the minimum current output current is 3.3 mA.

Figure 18: Connecting Digital Outputs to the STP15 Screw Terminal Panel
Verifying the Operation of a Module

Select the Device ... 49
Acquire Data from an Analog Output Channel 52
You can verify the operation of a DT9847 Series module using the QuickDAQ application.

QuickDAQ allows you to acquire and analyze data from all Data Translation USB and Ethernet devices, except the DT9841 Series, DT9817, DT9835, and DT9853/54. This chapter describes how to verify the operation of a DT9847 Series module using the QuickDAQ base version.
Select the Device

To get started with your DT9847 Series module and the QuickDAQ application, follow these steps:

1. Connect the DT9847 Series module to the USB port of your computer, and connect your sensors to the module.

2. Start the QuickDAQ application.

 (The Device Selection window appears.)

3. For the Device Family selection, select OpenLayersDevices.

 By default, the application "discovers" all devices that are available for the specified device family and displays the module name for the USB devices in the drop-down list. If you want to refresh this list to determine if other devices are available, click Refresh.

4. Select the module name for the DT9847 Series module that you want to use from the list of Available Devices, and click Add.

 Information about the device, including the model number, serial number, firmware version, driver version, and scanning status is displayed.
5. If you want to rename your device, do the following:
 a. Click the Row Selector button for the device.
 b. Click the IP address or module name in the Name column to highlight it and enter a meaningful name to represent each available device.

6. If you are using multiple devices, you must configure one device as the clock and trigger master, as follows:
 a. Click the Row Selector button for the device that you want to be the clock and trigger master.
 b. For the clock and trigger master device, check the box under the Master column.

Note: Only one device can be the clock and trigger master. If you are using a single device, the application automatically configures the device as the master.

DT9847 Series modules support that capability of synchronizing up to four devices. If you are using more than one of these devices, ensure that you connect the devices together using network cables and the Sync Bus (RJ45) connector on each device. Then, configure one device as the master and the other devices as slaves. The software automatically drives out the appropriate clock and trigger signals. Refer to page 79 for more information on synchronizing devices.

7. (Optional) If you want to remove a device from list of selected devices, click the Row Selector button for the device, and then click **Remove**.

8. Once you have added all the devices that you want to use with the application, click **OK**. The latest state is saved and used when the application is next run, and the interface of the QuickDAQ application is displayed.
Verifying the Operation of a Module
Acquire Data from an Analog Output Channel

The following steps describe how to use the QuickDAQ application to monitor the output of the analog output signal using an analog input channel.

In this example, a 3 V sine wave is output on analog output channel 0 of a DT9847-1-1 module. The analog output channel is connected to analog input channel 0 on the DT9847-1-1 module.

Configure the Analog Output Settings

For this example, configure the analog output channel as follows:

1. Click the Output tab of the Acquisition and Config window.
2. Select the **Enable** checkbox to enable the analog output channel on the module.
3. For the **Waveform** type, select **Fixed**.
4. For **Peak Voltage**, enter 3 to output a ±3 V signal.
5. For **Offset**, enter 0.
6. For **Signal Type**, select **Sine** to output a sine wave.
7. For **Output Mode**, select **Continuous** to output a waveform that repeats continuously.
8. For **Frequency**, select **10 Hz**; this is the frequency of the output waveform.
9. For **Ramp Up Time**, enter 0.
10. For the **Start/Stop Method**, select **With Acquisition**.
 The analog output operation will start when you start acquisition.
11. If desired, hide the Acquisition Config window by clicking the Auto-Hide pin () in the top, right corner of the window.

Configure the Analog Input Channel

Configure the analog input channel as follows:

1. Ensure that the output from analog output channel 0 is connected to the input of analog input channel 0.
2. Configure the analog input channel by clicking the **Input Channel Configuration** toolbar button () or by clicking the **Configuration** menu and clicking **Input Channel Configuration**.
3. Enable analog input channel 0 by clicking the **Enable** checkbox next to the channel.
4. Under the **Channel Name** column, leave the default channel name as Ain 0.
5. Under the **Range** column, select the input range for analog input channel.
 In this example, ±10 V is used.
6. Under the **Coupling** column, select the coupling type (AC or DC) for your sensor.
 *Since this example is monitoring a voltage input, **DC** is used.*
7. Under the **Current Source** column, select whether to enable or disable use of the 4 mA current source on the data acquisition device.
 *Since this example is monitoring a voltage input, the **Current Source** checkbox is not checked (disabled) for the analog input channel.*

8. Under the **Engineering Units** column, select the engineering units for the input.
 In this example, V is used.

9. Enter the number of mV per engineering unit in the **mV/EU** field.
 In this example, 1000 is used.

10. If an offset is specified for the input, enter the value in the **EU Offset** field.
 In this example, no offset (0) is specified.

11. If desired, enter a test point value for the channel.
 In this example, 0 is used.

12. If desired, enter a sensor direction for each channel.
 In this example, Scalar is used.

13. Click **Close** to close the Configure Devices dialog box.
Configure the Recording Settings

For this example, configure the recording settings as follows:

1. Click the **Recording** tab of the Acquisition Config window.

2. For **Filename generation**, use the default **Filename** option.

3. For **Filename**, use the default name for the data file.

4. Leave the **Enable Continuous Acquisition** checkbox unchecked.

5. For **Acquisition Duration**, select 1 second.
 The number of seconds for the total run and the amount of available disk space are shown.

6. For **X Span Axis**, select 1 second.
Configure the Acquisition Settings

For this example, configure the acquisition settings as follows:

1. Click the Acquisition tab of the Acquisition Config window.

2. For the Per Channel Sampling Frequency text box, enter 2000. The application snaps the value to the closest sampling frequency. The sampling rate, sample interval, and number of scans are displayed.

3. For the Trigger Source check box, select Software to ensure that the measurement starts as soon as the Record button is clicked.
Start the Operation

Once you have configured the channels and the application parameters, click the Record toolbar button () or press the F5 key to start the operation.

Results similar to the following are displayed in the Channel Plot window, showing the output of analog output channel 0 as measured by analog input channel 0.

![Channel Plot](image)

Note: Many additional options are provided in QuickDAQ for measuring and analyzing the data. Refer to the *QuickDAQ User’s Manual* for detailed information.
Part 2: Using Your Module
Principles of Operation

Analog Input Features ... 64
Analog Output Features ... 72
Digital I/O Features .. 77
Triggering Acquisition on Multiple Modules 78
Synchronizing Acquisition on Multiple DT9847 Series Modules 79
Figure 19 shows a block diagram of the DT9847-1-1 module.

Figure 20 shows a block diagram of a DT9847-2-2 module.
Figure 21 shows a block diagram of the DT9847-3-1 module.

Figure 21: Block Diagram of the DT9847-3-1 Module
Analog Input Features

This section describes the following features of analog input (A/D) subsystem on the DT9847 Series modules:

- Analog input channels, described on this page
- IEPE functions, described on page 65
- Input resolution, described on page 65
- Input ranges and gains, described on page 64
- Input sample clock sources, described on page 65
- Analog input conversion modes, described on page 66
- Input triggers, described on page 69
- Data format and transfer, described on page 71
- Error conditions, described on page 71

Analog Input Channels

The DT9847-1-1 module provides one analog input channel (channel 0), the DT9847-2-2 provides two analog input channels (channels 0 and 1), and the DT9847-3-1 provides three analog input channels (channels 0 to 2). These are signal-ended channels; you can connect IEPE sensors to these inputs, if desired; refer to page 65 for more information on IEPE functions.

Note: To maintain simultaneous operation, all analog input connections on the DT9847 Series modules must have the same lead lengths.

The DT9847 Series modules use Delta-Sigma analog-to-digital converters (ADCs) that provide anti-aliasing filters based on the clock rate. These filters remove aliasing, which is a condition where high frequency input components erroneously appear as lower frequencies after sampling.

Using software, you can acquire a single value from a single analog input channel, a single value from all the analog input channels simultaneously (for the DT9847-2-2 and DT9847-3-1), or multiple values from a one or more analog input channels. Refer to “Analog Input Conversion Modes” on page 66 for more information on specifying and reading data from these channels.

Input Ranges and Gains

The DT9847 Series modules provide an input range of ±10 V and software-selectable gains of 1 and 10. This provides effective input ranges of ±10 V (when the gain is 1) and ±1 V (when the gain is 10).
IEPE Functions

Applications that require accelerometer, vibration, noise, or sonar measurements often use IEPE sensors. IEPE conditioning is built-in to the analog input circuitry of the DT9847 Series modules. The modules support the following software-programmable IEPE functions for each analog input channel:

- **Excitation current source** – The DT9847 Series modules provide an internal excitation current source of 4 mA. You can enable or disable the use of a internal excitation current source using software. By default, the excitation current source is disabled.

- **Coupling type** – You can select whether AC coupling or DC coupling is used. By default, DC coupling is selected for the DT9847 Series modules.

For information on wiring IEPE inputs, refer to page 40.

Note: If you enable the use of the internal excitation current source, it is recommended that you choose AC coupling.

Input Resolution

The resolution of the analog input channels is fixed at 24 bits; you cannot specify the resolution in software.

Input Clock Source

The DT9847 Series modules support a 48 MHz internal clock source, which is derived from the 24 MHz USB crystal oscillator. The same internal 48 MHz clock signal is used for the both the analog input and analog output subsystems.

For the analog input subsystem, use software to specify the internal clock source and the frequency at which to pace the input operations and to start the sample clock. The sampling frequency ranges from 1 kHz to 216 kHz.

Note: According to sampling theory (Nyquist Theorem), specify a frequency that is at least twice as fast as the input’s highest frequency component. For example, to accurately sample a 20 kHz signal, specify a sampling frequency of at least 40 kHz to avoid aliasing.

The sample frequencies for the A/D and D/A subsystems are independently programmable and are derived from the same 48 MHz reference clock. Therefore, it is possible to establish a fixed relationship between the A/D and D/A subsystem sample frequencies, including setting them to the same frequency (30 kHz to 216 kHz). However, the subsystems are not designed to be synchronous with each other.
Once the sample clock is started, the module requires 63 conversions before the first A/D sample is valid. The valid sample is aligned with the A/D trigger.

On the DT9847 Series, the sampling frequency is generated by a programmable clock chip rather than a divider off the reference clock for better flexibility and accuracy.

Configuration Delay

Due to the design of the A/D converter on the DT9847 Series, you may notice a delay after you configure the sampling frequency on the module (when the Config command is called). The delay is more significant at slower sampling frequencies.

The configuration delay is determined as follows:

- **Sampling rate \(\leq 50 \text{ kHz} \):**

 \[
 \text{Configuration delay} = \frac{8719 \text{ Samples}}{\text{Sampling rate}}
 \]

- **Sampling rate \(\leq 100 \text{ kHz} \):**

 \[
 \text{Configuration delay} = \frac{17423 \text{ Samples}}{\text{Sampling rate}}
 \]

- **Sampling rate \(\leq 216 \text{ kHz} \):**

 \[
 \text{Configuration delay} = \frac{34831 \text{ Samples}}{\text{Sampling rate}}
 \]

For example, if you specify a sampling frequency of 1 kHz (sampling rate is 1 kSamples/s), the delay after you configure the sampling rate is 8.719 s, determined as follows:

\[
\frac{8719 \text{ Samples}}{1 \text{ kSamples/s}} = 8.719 \text{ s}
\]

Similarly, if you specify a sampling frequency of 216 kHz (sampling rate is 216 kSamples/s), the delay after you configure the sampling rate is 0.161 s, determined as follows:

\[
\frac{34831 \text{ Samples}}{216 \text{ kSamples/s}} = 0.161 \text{ s}
\]

Analog Input Conversion Modes

DT9847 Series modules support single-value, single-values, and continuous scan conversion modes. This section describes each of these conversion modes.

Single-Value Operations

Single-value operations are simpler to use than continuous operations. Using software, you specify the analog input channel and the gain that you want to use. For the DT9847-1-1, specify channel 0; for the DT9847-2-2, specify channel 0 or 1; for the DT9847-3-1, specify channel 0, 1, or 2. The module acquires the data from the specified channel and returns the data immediately.

For single-value operations, you cannot specify a clock source, trigger source, scan mode, or buffer. Single-value operations stop automatically when finished; you cannot stop a single-value operation.
Single-Values Operations

For the DT9847-2-2 or DT9847-3-1 module, you may prefer to read a single value from all the analog input channels simultaneously using one software call. This is called a single-values operation. You specify the analog input subsystem and the gain that you want to use for the channels (not the channels themselves). The module then acquires a value from each input channel simultaneously; the data is returned as an array of input values.

For single-values operations, you cannot specify a clock source, trigger source, scan mode, or buffer. Single-values operations stop automatically when finished; you cannot stop a single-values operation.

Continuous Scan Mode

Continuous scan mode takes full advantage of the capabilities of the DT9847 Series modules. You can specify a channel list, clock source, start trigger, reference trigger, post-trigger scan count, and buffer using software.

On the DT9847-1-1 module, you can enter up to one entry in the channel list (analog input channel 0). On the DT9847-2-2 module, you can enter up to two entries in the channel list (analog input channels 0 and 1). On the DT9847-3-1 module, you can enter up to three entries in the channel list (analog input channels 0 to 2). Using software, specify the channels you want to sample in sequential order.

When it detects the start trigger, the module samples all the channels in the list simultaneously.

If a reference trigger is not specified, data that is acquired after the start trigger is post-trigger data. The sampled data is placed in the allocated buffer(s). The operation continues until you stop it or until no more buffers are available.

If a reference trigger is specified, data that is acquired after the start trigger is pre-trigger data; when the reference trigger occurs, pre-trigger data acquisition stops and post-trigger acquisition starts at the next sample. The sampled data is placed in the allocated buffer(s). The operation continues until the number of scans that you specify for the post-trigger scan count have been acquired; at the point, the operation stops. Note that the sample at which the trigger occurs is not counted as a post-trigger sample. Refer to page 69 for more information about triggers.

The conversion rate is determined by the frequency of the input sample clock; refer to page 65 for more information about the input sample clock.

Using software, you can stop a scan by performing either an orderly stop or an abrupt stop. In an orderly stop, the module finishes acquiring the current buffer, stops all subsequent acquisition, and transfers the acquired data to host memory; any subsequent triggers are ignored. In an abrupt stop, the module stops acquiring samples immediately; the current buffer is not completely filled, it is returned to the application only partially filled, and any subsequent triggers are ignored.
To select continuous scan mode, use software to specify the following parameters:

- Specify the data flow as Continuous
- Specify the clock source as internal and specify the clock frequency (refer to page 65)
- Specify the start trigger (refer to page 69)
- Specify the reference trigger (refer to page 70)
- Specify the post-trigger scan count (the number of post-trigger samples to acquire after the reference trigger occurs)

Figure 22 illustrates continuous scan mode (using a start and reference trigger) with a channel list of three entries: channel 0 through channel 2. In this example, pre-trigger analog input data is acquired when the start trigger is detected. When the reference trigger occurs, the specified number of post-trigger samples (3, in this example) are acquired.

Figure 22: Continuous Scan Mode on the DT9847 Series Modules Using a Start and Reference Trigger

Note: The USB LED, shown in Figure 34 on page 132, blinks amber while the module is acquiring data.

The Trigger LED on the module, shown in Figure 34 on page 132, is green when the module is waiting for an external digital trigger, threshold trigger, or Sync Bus trigger (the module must have been configured for one of these trigger types), green when the module has been triggered, or off when the module is idle.
Input Triggers

A trigger is an event that occurs based on a specified set of conditions.

On the DT9847 Series modules, you can specify a start trigger source and a reference trigger source. Pre-trigger data acquisition starts when the start trigger event occurs. When the reference trigger event occurs, pre-trigger data acquisition stops and post-trigger acquisition starts. Post-trigger acquisition stops when the number of samples you specify for the post-trigger scan count has been reached. Refer to page 67 for more information.

The Trigger LED on the module, shown in Figure 34 on page 132, is green when the module is waiting for an external digital trigger, threshold trigger, or Sync Bus trigger (the module must have been configured for one of these trigger types), red when the module has been triggered, or off when the module is idle.

Start Trigger Sources

The DT9847 Series modules support the following sources for the start trigger:

- **Software trigger** – A software trigger event occurs when you start the analog input operation (the computer issues a write to the module to begin conversions). Using software, specify the start trigger source as a software trigger.

- **External digital (TTL) trigger** – An external digital (TTL) trigger event occurs when the module detects a rising- or falling-edge transition on the signal connected to the External Trigger pin (pin 13) of the Digital I/O and External Trigger connector on the module. Using software, specify the trigger source as an external, positive digital (TTL) trigger to detect the trigger on the rising edge or an external, negative digital (TTL) trigger to detect the trigger on the falling edge.

 Note: If you configure the synchronization mode as slave, the Sync Bus connector accepts trigger and clock signals from the master; you cannot use the Ext Trig connector on the slave module. Refer to page 79 for more information.

- **Analog threshold trigger** – The start trigger event occurs when the signal attached to a specified analog input channel in the channel list rises above or falls below a user-specified threshold value. Using software, specify the following parameters:
 - Start trigger source – Specify a positive (low-to-high transition) threshold trigger if you want to trigger when the signal rises above a threshold level, or a negative (high-to-low transition) threshold trigger if you want to trigger when the signal falls below a threshold level.
 - Threshold channel – Specify any one of the analog input channels that are included in the channel list as the threshold input channel.
 - Threshold level – Specify a value between \(\pm 10 \) V for a gain of 1 or \(\pm 1 \) V for a gain of 10 as the threshold level.
Note: If you choose a threshold trigger as both the start trigger and the reference trigger, the threshold channel and threshold level must be the same. The polarity of the trigger (positive or negative going) can be different for each trigger source.

- **Sync Bus trigger** – When multiple DT9847 Series modules (or multiple DT9847 Series and DT9837 Series or DT9838 modules) are connected together using the Sync Bus (RJ45) connector, you can use the Sync Bus trigger as the start trigger of the slave module by setting the synchronization mode of module to Slave. In this configuration, any other start trigger for the slave module is ignored. Refer to page 79 for more information on this configuration.

Reference Trigger Sources

The DT9847 Series modules support the following sources for the reference trigger:

- **External digital (TTL) trigger** – The reference trigger event occurs when the module detects a rising- or falling-edge transition on the signal connected to the External Trigger pin (pin 13) of the Digital I/O and External Trigger connector on the module. Using software, specify the reference trigger source as an external, positive digital (TTL) trigger to detect the trigger on the rising edge or an external, negative digital (TTL) trigger to detect the trigger on the falling edge.

- **Analog threshold trigger** – The reference trigger event occurs when the signal attached to a specified analog input channel in the channel list rises above or falls below a user-specified threshold value. Using software, specify the following parameters:
 - Reference trigger source – Specify a positive (low-to-high transition) threshold trigger if you want to trigger when the signal rises above a threshold level, or a negative (high-to-low transition) threshold trigger if you want to trigger when the signal falls below a threshold level.
 - Threshold channel – Specify any one of the analog input channels that are included in the channel list as the threshold input channel.
 - Threshold level – Specify a value between ±10 V for a gain of 1 or ±1 V for a gain of 10 as the threshold level.

Note: If you choose a threshold trigger as both the start trigger and the reference trigger, the threshold channel and threshold level must be the same. The polarity of the trigger (positive or negative going) can be different for each trigger source.

- **Sync Bus trigger** – When multiple DT9847 Series modules (or multiple DT9847 Series and DT9837 Series or DT9838 modules) are connected together using the Sync Bus (RJ45) connector, you can set the reference trigger of a slave DT9847 Series module to Sync Bus if you want to receive a Sync Bus trigger from one of the other modules to stop pre-trigger acquisition and start post-trigger acquisition. Refer to page 79 for more information on this configuration.
Data Format and Transfer

DT9847 Series modules use offset binary data encoding, where 000000 represents negative full-scale, and FFFFFFFh represents positive full-scale. Use software to specify the data encoding as binary. The ADC outputs FFFFFFFh for above-range signals, and 000000 for below-range signals.

Before you begin acquiring data, you must allocate buffers to hold the data. A Buffer Done event is returned whenever a buffer is filled. This allows you to move and/or process the data as needed.

We recommend that you allocate a minimum of two buffers for continuous analog input operations. Data is written to multiple allocated input buffers continuously; when no more empty buffers are available, the operation stops. The data is gap-free.

Note: DT9847 Series modules have an 8 kSample input FIFO that is used to store the acquired data before it is sent to the host.

Error Conditions

DT9847 Series modules report any overrun errors by sending an overrun event to the application program. This event indicates that data buffers are not being sent from the module to the host fast enough, and the A/D converter ran out of buffers. To avoid this error, try one or more of the following:

- Reduce the clock rate of the A/D
- Increase the size of the buffers
- Increase the number of buffers
- Close any other applications that are running
- Run the program on a faster computer

If one of these error conditions occurs, the module stops acquiring and transferring data to the host computer.
Analog Output Features

This section describes the following features of analog output operations:

- Analog output channels, described below
- Output ranges and gains, described below
- Output resolution, described below
- Output clocks, described below
- Output conversion mode, described on page 73
- Output triggers, described on page 75
- Data format and transfer, described on page 76
- Error conditions, described on page 76

Analog Output Channels

The DT9847-1-1 and DT9847-3-1 modules support one analog output channel (0) through analog output subsystem 0. The DT9847-2-2 module supports two analog output channels (0 and 1) through analog output subsystem 0.

The DT9847 Series modules provide a two-pole, 250 kHz Butterworth filter to prevent noise from interfering with the output signal.

The analog output channel powers up to a value of 0 V ±10 mV.

Output Ranges and Gains

The DT9847 Series modules can output bipolar analog output signals in the range of ±3 V or ±10 V. The output range is software programmable. The gain is 1.

Note: Older versions of the module may support only the ±3 V range.

Output Resolution

The resolution of the analog output channel is fixed at 32-bits; you cannot specify the resolution in software.

Output Clocks

The DT9847 Series modules support a 48 MHz internal clock source, which is derived from the 24 MHz USB crystal oscillator. The same internal 48 MHz clock signal is used for the both the analog input and analog output subsystems.
Principles of Operation

For the analog output subsystem, use software to specify the internal clock source and the output frequency. The output frequency can range between 30 kHz and 216 kHz.

Note: The sample frequencies for the A/D and D/A subsystems are independently programmable and are derived from the same 48 MHz reference clock. Therefore, it is possible to establish a fixed relationship between the A/D and D/A subsystem sample frequencies, including setting them to the same frequency (30 kHz to 216 kHz). However, the subsystems are not designed to be synchronous with each other.

Due to the group delay of the Delta-Sigma D/A converter, the DT9847 Series modules require 36 clock pulses once the analog output sample clock is started before the first D/A conversion is completed.

Output Conversion Modes

The DT9847 Series modules support single-value, waveform, and continuous analog output operations.

Single-Value Mode

Single-value mode is the simplest to use but offers the least flexibility and efficiency. Use software to specify the analog output channel that you want to update, and the value to output from that channel. The value is output from the specified channel immediately.

For a single-value operation, you cannot specify a clock source, trigger source, or buffer. Single-value operations stop automatically when finished; you cannot stop a single-value operation.

Waveform Generation Mode

Waveform generation mode is supported on the DT9847 Series modules. In this mode, a waveform, which is specified in a single buffer, is output repetitively. The waveform pattern can range from 2 to 8192 samples if you are using one analog output channel or from 2 to 4096 if you are using two analog output channels. Use software to fill the output buffer with the values that you want to write to the channels in the output channel list.

Note: If you are using the DataAcq SDK, you must specify the data in a particular order. For example, if your output channel list contains analog output channels 0 and 1, specify the values in the output buffer as follows: the first output value for analog output channel 0, the first output value for analog output channel 1, the second output value for analog output channel 0, the second output value for analog output channel 1, and so on.

This is not required in the DT-Open Layers for .NET Class Library.
The host computer transfers the entire waveform pattern to the 8 kSample output FIFO on the module. When it detects a software trigger, the module starts writing output values to the analog output channels at the specified clock rate. The module recycles the data, allowing you to output the same pattern continuously without any further CPU or USB bus activity.

When it reaches the end of the FIFO, the module returns to the first location of the FIFO and continues outputting the data. This process continues indefinitely until you stop it.

To select waveform generation mode, use software to specify the following parameters:

- Specify the data flow as Continuous
- Specify WrapSingleBuffer as True to use a single buffer
- Specify the clock source as internal and specify the clock frequency. Refer to page 72 for more information about the clock source and frequency.
- Specify a software trigger source, described in the next section

The DT9847 Series hardware supports the ability to mute the output voltage to 0 V. Muting the output does not stop the analog output operation; instead, the analog output voltage is reduced to 0 V over 1020 samples. When desired, you can use unmute the output voltage to its current level. Refer to your software documentation for more information on muting and unmuting the output voltage.

Continuous Analog Output Operations

Use continuously paced analog output mode to continuously output buffered values to the analog output channel at a specified clock frequency. The DT9847 Series modules support the ability to start continuous analog output operations and continuous analog input operations simultaneously.

Note: If you are using the DataAcq SDK, you must specify the data in a particular order. For example, if your output channel list contains analog output channels 0 and 1, specify the values in the output buffer as follows: the first output value for analog output channel 0, the first output value for analog output channel 1, the second output value for analog output channel 0, the second output value for analog output channel 1, and so on.

This is not required in the DT-Open Layers for .NET Class Library.

When it detects a trigger, the module starts writing the values from the output buffer to the channels specified in the output channel list at the specified clock frequency. The operation repeats continuously until all the data is output from the buffers or you stop the operation.

Note: Make sure that the host computer transfers data to the output channel list fast enough so that the list does not empty completely; otherwise, an underrun error results.
To select continuously paced analog output mode, use software to specify the following parameters:

- Specify the data flow as Continuous
- Specify WrapSingleBuffer as False to use multiple buffers
- Specify the clock source as internal and specify the clock frequency. Refer to page 72 for more information about the clock source and frequency.
- Specify the trigger source as any of the supported trigger sources. Refer to page 75 for more information about the supported trigger sources.
- To start the analog input and analog output operations simultaneously using the DT-Open Layers for .NET Class Library, use the `SimultaneousStart.AddSubsystem`, `SimultaneousStart.PreStart`, and `SimultaneousStart.Start` methods. Refer to the documentation for the DT-Open Layers for .NET Class Library for more information.

We recommend that you allocate a minimum of two buffers for a continuously paced analog output operation. Data is written from multiple output buffers continuously; when no more buffers of data are available, the operation stops. The data is gap-free.

Note: The USB LED, shown in Figure 34 on page 132, blinks amber while the module is streaming the data to the analog output channels in continuous mode.

The DT9847 Series hardware supports the ability to mute the output voltage to 0 V. Muting the output does not stop the analog output operation; instead, the analog output voltage is reduced to 0 V over 1020 samples. When desired, you can use unmute the output voltage to its current level. Refer to your software documentation for more information on muting and unmuting the output voltage.

To stop a continuously paced analog output operation, you can stop queuing buffers for the analog output system, letting the module stop when it runs out of data, or you can perform either an orderly stop or an abrupt stop using software. In an orderly stop, the module finishes outputting the specified number of samples, and then stops; all subsequent triggers are ignored. In an abrupt stop, the module stops outputting samples immediately; all subsequent triggers are ignored.

Output Trigger

The DT9847 Series modules support the following trigger sources for starting analog output operations:

- **Software trigger** – A software trigger event occurs when you start the analog output operation (the computer issues a write to the module to begin conversions). Using software, specify the trigger source for the D/A subsystem as a software trigger.

- **External digital (TTL) trigger** – An external digital (TTL) trigger event occurs when the module detects a rising- or falling-edge transition on the signal connected to the External Trigger pin (pin 13) of the Digital I/O and External Trigger connector on the module.
Using software, specify the trigger source for the D/A subsystem as an external, positive digital (TTL) trigger or an external, negative digital (TTL) trigger.

Note: If you configure the synchronization mode as slave, the Sync Bus connector accepts trigger and clock signals from the master; you cannot use the Ext Trig connector on the slave module. Refer to page 79 for more information.

- **Sync Bus trigger** – When multiple DT9847 Series modules (or multiple DT9847 Series and DT9837 Series or DT9838 modules) are connected together using the Sync Bus (RJ45) connector, you can use the Sync Bus trigger as the start trigger of the slave module by setting the synchronization mode of module to Slave. In this configuration, any other start trigger for the slave module is ignored. Refer to page 79 for more information on this configuration.

Data Format and Transfer

Data from the host computer must use offset binary data encoding for analog output signals, where 00000000 represents the negative full-scale voltage, and FFFFFFFFh represents the positive full-scale voltage. Using software, specify the data encoding as binary.

Error Conditions

The DT9847 Series modules report any underrun errors by sending an underrun event to the application. This event indicates that the data buffers are not being sent from the host to the module fast enough, and the D/A converter ran out of data. To avoid this error, try one or more of the following:

- Reduce the clock rate of the analog output operation
- Close any other applications that are running
- Run the program on a faster computer
Digital I/O Features

This section describes the following features of digital I/O operations:

- Digital I/O lines, described below
- Operation modes, described below

Digital I/O Lines

The DT9847 Series modules support one digital input port, consisting of 4 digital input lines (lines 0 to 3) and one digital output port, consisting of 4 digital output lines (lines 0 to 3). The resolution is fixed at 4 bits; you cannot change the resolution in software.

You can read all 4 digital input lines or write all 4 digital output lines with a single-value digital I/O operation.

A digital line is high if its value is 1; a digital line is low if its value is 0. On power up or reset, a low value (0) is output from each of the digital output lines.

Operation Modes

The DT9847 Series modules support single-value digital I/O operations. You use software to specify the digital I/O port (the gain is ignored). Data is then read from or written to all the digital I/O lines.

Single-value operations stop automatically when finished; you cannot stop a single-value operation.
Triggering Acquisition on Multiple Modules

Note: For DT9847 Series modules, you can synchronize acquisition on multiple modules using the Sync Bus (RJ45) connector, described on page 79.

The internal clock on the DT9847 Series modules when the synchronization mode is none (see page 79), is derived from the USB clock and provides the timing for both the analog input and analog output subsystems on the module.

You can start acquisition on multiple modules by connecting all modules to a shared external trigger input, as shown in Figure 23. When triggered, the modules start acquiring data at the same time.

Using this connection scheme, the measurements of one module may not be synchronous with the measurements of another module due to logic delays in the clocking and USB circuitry.

![Figure 23: Triggering Multiple Modules Using an External Trigger Source](image-url)
Synchronizing Acquisition on Multiple DT9847 Series Modules

DT9847 Series modules provide a Sync Bus (RJ45) connector that you can use to connect and synchronize multiple DT9847 Series modules.

Note: Note that you can also connect DT9837A, DT9837B, DT9837C, and/or DT9838 modules to a DT9847 Series module in this configuration. Refer to the *DT9837 Series User’s Manual* and the *DT9838 User’s Manual* for more information.

In this scheme, one module is the master and the other modules are the slave. You specify the synchronization mode (master, slave, or none) of the A/D subsystem using software.

When configured as a master, the Sync Bus connector outputs trigger and clock signals. When configured as a slave, the Sync Bus connector accepts trigger and clock signals from the master; the start trigger source on the slave module in is ignored in this configuration since the Sync Bus is used as the start trigger. When configured as none (the default mode), the DT9847 Series module uses the USB clock instead of the Sync Bus connector. The synchronization mode remains set until changed or until the application exits.

You can connect multiple modules in one of two ways. Figure 24 shows how to connect a maximum of two DT9847 Series modules by daisy chaining them together through the Sync Bus connector. Figure 25 shows how to connect a maximum of four DT9847 Series modules by using an RJ45 distribution panel, such as the EP386, where the panel contains four RJ45 connectors that are wired in parallel.

Figure 24: Synchronizing Two DT9847 Series Modules by Daisy Chaining the Sync Bus Connectors
When synchronizing multiple modules, start the slave modules before starting the master module. When the master DT9847 Series module is triggered (using the software trigger, external digital trigger, or threshold trigger), both the master and the slave modules start acquiring data at the same time (within one A/D conversion of the clock). Note that you can set the clock rate to be the same or different on each module.
Note: It is important that you start the slave modules first, followed by the master module so that the slave receives the appropriate clock and trigger signals from the master.

If you start the master module before the slaves, the slaves never start; you will see a delay of approximately 20 seconds if you try to stop or abort the analog input operation on a slave module that is waiting for a trigger.

When you stop the master module, the slaves continue to run and return data until you stop the analog input subsystem on the slave modules. Be sure to stop the analog input subsystems on all slave modules before disconnecting the cable from the Sync Bus connectors.

Triggering DT9847 and DT9837 Series Modules Using the Sync Bus

If you are connecting the DT9847 Series module to a DT9837 Series module using the Sync Bus connector, be aware of triggering limitations.

Note: There are no triggering limitations when connecting a DT9847 Series module to a DT9838 module using the Sync Bus connector; follow the instructions on page 80 when connecting a DT9838 module.

The DT9837 Series supports the following start trigger sources: software, external digital trigger, and threshold trigger. For the reference trigger, the DT9837 Series supports only the threshold trigger source. When configured as a slave, the DT9837 Series processes a single Sync Bus trigger; the Sync Bus trigger is considered the start trigger and is received and/or driven out as such.

Consider the case where the DT9847 Series module is the master and a DT9837 Series module is the slave, as shown in Figure 26.
In this case, the start trigger on the master DT9847 Series module can be a software trigger, external digital trigger, or threshold trigger. The reference trigger on the master DT9847 Series module can be an external digital trigger or threshold trigger.

The start trigger on the slave DT9837 Series module is ignored, since the Sync Bus is used as the start trigger. The reference trigger on the slave DT9837 Series can be the threshold trigger, or you can use software to stop the DT9837 Series module and correlate the data.

Now, consider the case where the DT9837 Series is the master and a DT9847 Series module is the slave, as shown in Figure 27.
Figure 27: Synchronizing a Master DT9837 Series Module and a Slave DT9847 Series Module Using the Sync Bus Connector

In this case, the start trigger on the master DT9837 Series module can be a software, external digital, or threshold trigger. The reference trigger on the master DT9837 Series module can be the threshold trigger.

The start trigger on the slave DT9847 Series module is ignored, since the Sync Bus is used as the start trigger. The reference trigger on the slave DT9847 Series module can be an external digital trigger or threshold trigger (the Sync Bus trigger is not supported as a reference trigger in this configuration), or you can use software to stop the DT9847 Series module and correlate the data.
Supported Device Driver Capabilities

- Data Flow and Operation Options .. 87
- Buffering .. 88
- Triggered Scan Mode ... 88
- Data Encoding .. 88
- Channels .. 89
- Gain ... 89
- Ranges .. 90
- Resolution .. 90
- Current and Resistance Support .. 90
- Thermocouple, RTD, and Thermistor Support 91
- IEPE Support .. 92
- Bridge and Strain Gage Support .. 92
- Start Triggers ... 93
- Reference Triggers ... 94
- Clocks .. 95
- Counter/Timers ... 96
- Tachometers .. 97
The DT9847 Series Device Drivers provide support for the analog input (A/D) and analog output (D/A) subsystems. For information on how to configure the device drivers, refer to page 36.

Table 2: DT9847 Series Subsystems

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Subsystems on Module</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The tables in this chapter summarize the features available for use with the DT-Open Layers for .NET Class Library and the DT9847 Series modules. The DT-Open Layers for .NET Class Library provides properties that return support information for specified subsystem capabilities.

The first row in each table lists the subsystem types. The first column in each table lists all possible subsystem capabilities. A description of each capability is followed by the property used to describe that capability in the DT-Open Layers for .NET Class Library.

Note: The following tables include the capabilities that can be queried. However, some capabilities may not be supported by your device. Blank fields represent unsupported options.

For more information, refer to the description of these properties in the DT-Open Layers for .NET Class Library online help or *DT-Open Layers for .NET Class Library User’s Manual*.
Data Flow and Operation Options

Table 3: Data Flow and Operation Options

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Value Operation Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneous Single-Value Output Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Operation Support</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Operation until Trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Operation before & after Trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waveform Operations Using FIFO Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes^a</td>
</tr>
<tr>
<td>Simultaneous Start List Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes^b</td>
</tr>
<tr>
<td>Supports Programmable Synchronization Modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization Modes</td>
<td>None, Master, Slave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupt Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFO Size, in samples</td>
<td>8 kSamples</td>
<td>8 kSamples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muting and Unmuting the Output Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Auto-Calibrate Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a. The DT9847 Series modules support continuous analog output operations in addition to waveform mode.

^b. The DT9847 Series modules support the ability to start continuous A/D and continuous D/A operations simultaneously.
Buffering

Table 4: Buffering Options

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer Support</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsBuffering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Buffer Wrap Mode Support</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsWrapSingle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inprocess Buffer Flush Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsInProcessFlush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Triggered Scan Mode

Table 5: Triggered Scan Mode Options

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triggered Scan Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsTriggeredScan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Number of CGL Scans per Trigger</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MaxMultiScanCount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Retrigger Frequency</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MaxRetriggerFreq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Retrigger Frequency</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MinRetriggerFreq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Encoding

Table 6: Data Encoding Options

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Encoding Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsBinaryEncoding</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twos Complement Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsTwosCompEncoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Returns Floating-Point Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReturnsFloats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Channels

Table 7: Channel Options

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NumberofChannels</td>
<td>1, 2, or 3<sup>a</sup></td>
<td>1 or 2<sup>b</sup></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsSingleEnded</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE Channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxSingleEndedChannels</td>
<td>1, 2, or 3<sup>a</sup></td>
<td>1 or 2<sup>b</sup></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsDifferential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI Channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxDifferentialChannels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Channel-Gain List Depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGLDepth</td>
<td>1, 2, or 3<sup>a</sup></td>
<td>1 or 2<sup>b</sup></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneous Sample-and-Hold Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsSimultaneousSampleHold</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel-List Inhibit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsChannelListInhibit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support MultiSensor Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsMultiSensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias Return Termination Resistor Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsInputTermination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-^a The DT9847-1-1 supports one analog input channel; the DT9847-2-2 supports two analog input channels; and the DT9847-3-1 supports three analog input channels.
-^b The DT9847-1-1 and DT9847-3-1 modules support one analog output channel, and the DT9847-2-2 module supports two analog output channels.

Gain

Table 8: Gain Options

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable Gain Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsProgrammableGain</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Gains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NumberOfSupportedGains</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Gains Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportedGains</td>
<td>1 and 10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ranges

Table 9: Range Options

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Voltage Ranges</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Ranges</td>
<td>±10 V<sup>a</sup></td>
<td>±3 V or ±10 V<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. By applying a gain of 1, the effective input range is ±10 V. By applying a gain of 10, the effective input range is ±1 V.
b. Software-programmable. Older versions of the module may support only the ±3 V range.

Resolution

Table 10: Resolution Options

<table>
<thead>
<tr>
<th>DT9847 Series Modules</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Programmable Resolution SupportsSoftwareResolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Resolutions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Resolutions</td>
<td>24</td>
<td>32</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current and Resistance Support

Table 11: Current and Resistance Support Options

<table>
<thead>
<tr>
<th>DT9847 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Support</td>
<td>SupportsCurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Output Support</td>
<td>SupportsCurrentOutput</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance Support</td>
<td>SupportsResistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable External Excitation Current Source for Resistance</td>
<td>SupportsExternalExcitationCurrentSrc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable Internal Excitation Current Source</td>
<td>SupportsInternalExcitationCurrentSrc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Excitation Current Source Values</td>
<td>SupportedExcitationCurrentValues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thermocouple, RTD, and Thermistor Support

Table 12: Thermocouple, RTD, and Thermistor Support Options

<table>
<thead>
<tr>
<th>DT9847 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Thermocouple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports RTD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermistor Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Converted to Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Temperature Data in Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Thermocouple Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports CJC Source Internally in Hardware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports CJC Source Internal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports CJC Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports CJC Source Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available CJC Channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CJC Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Interleaved CJC Values in Data Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Interleaved CJC Temperatures in Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported RTD Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD R0 Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RtdR0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Data Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Temperature Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Filter Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Filter Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IEPE Support

Table 13: IEPE Support Options

<table>
<thead>
<tr>
<th>DT9847 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEPE Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsIEPE</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable AC Coupling SupportsACCoupling</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable DC Coupling SupportsDCCoupling</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable External Excitation Current Source SupportsExternalExcitationCurrentSrc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable Internal Excitation Current Source SupportsInternalExcitationCurrentSrc</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Excitation Current Source Values SupportedExcitationCurrentValues</td>
<td>0.004 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bridge and Strain Gage Support

Table 14: Bridge and Strain Gage Support Options

<table>
<thead>
<tr>
<th>DT9847 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Support</td>
<td>SupportsBridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Bridge Configurations</td>
<td>BridgeConfiguration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain Gage Support</td>
<td>SupportsStrainGage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Strain Gage Bridge Configurations</td>
<td>StrainGageBridgeConfiguration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Excitation Voltage</td>
<td>SupportsExternalExcitationVoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Excitation Voltage</td>
<td>SupportsInternalExcitationVoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Calibration</td>
<td>SupportsShuntCalibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Excitation Per Channel</td>
<td>SupportedPerChannelVoltageExcitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Excitation Voltage</td>
<td>MinExcitationVoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Excitation Voltage</td>
<td>MaxExcitationVoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Start Triggers

Table 15: Start Trigger Options

<table>
<thead>
<tr>
<th></th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Trigger Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsSoftwareTrigger</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Positive TTL Trigger Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsPosExternalTTLTrigger</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Negative TTL Trigger Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsNegExternalTTLTrigger</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Positive TTL Trigger Support for Single-Value Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsSvPosExternalTTLTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Negative TTL Trigger Support for Single-Value Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsSvNegExternalTTLTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Threshold Trigger Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsPosThresholdTrigger</td>
<td>Yes(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Threshold Trigger Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsNegThresholdTrigger</td>
<td>Yes(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Event Trigger Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsDigitalEventTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Trigger Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportedThresholdTriggerChannel</td>
<td>0 (DT9847-1-1), 0 or 1 (DT9847-2-2), 0, 1, 2 (DT9847-3-1)(^a)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) If you choose a threshold trigger for the start trigger on the DT9847 Series module, you can program the threshold level as a value between ±10 V for a gain of 1 or ±1 V for a gain of 10, and any of the supported analog input channels can be used as the threshold channel.
Reference Triggers

Table 16: Reference Trigger Options

<table>
<thead>
<tr>
<th></th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9847 Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Positive TTL Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsPosExternalTTLTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Negative TTL Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsNegExternalTTLTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Threshold Trigger Support</td>
<td>Yes(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsPosThresholdTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Threshold Trigger Support</td>
<td>Yes(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsNegThresholdTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Event Trigger Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsDigitalEventTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Bus Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsSyncBusTrigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Trigger Channel Support</td>
<td>0 (DT9847-1-1), 0 or 1 (DT9847-2-2), 0, 1, 2 (DT9847-3-1)(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportedThresholdTriggerChannel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Trigger Scan Count Support</td>
<td>Yes(^b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsPostTriggerScanCount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) If you choose a threshold trigger for the reference trigger on the DT9847 Series module, you can program the threshold level as a value between \(\pm 10\) V for a gain of 1 or \(\pm 1\) V for a gain of 10, and any of the supported analog input channels can be used as the threshold channel.

\(^b\) You can specify how many post-trigger samples to acquire after the reference trigger by specifying the post-trigger scan count in software.
Clocks

Table 17: Clock Options

<table>
<thead>
<tr>
<th>DT9847 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Clock Support</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Clock Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneous Input/Output on a Single Clock Signal</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Clock Frequency</td>
<td>13.824 MHz</td>
<td>27.648 MHz</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Clock Divider</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Clock Divider</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Frequency</td>
<td>216 kHz</td>
<td>216 kHz</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Frequency</td>
<td>1 kHz</td>
<td>30 kHz</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Counter/Timers

Table 18: Counter/Timer Options

<table>
<thead>
<tr>
<th>DT9847 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascading Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support Cascading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Count Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generate Rate Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support RateGenerate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-Shot Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support OneShot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive One-Shot Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support OneShotRepeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up/Down Counting Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support UpDown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge-to-Edge Measurement Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support Measure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Edge-to-Edge Measurement Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support ContinuousMeasure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High to Low Output Pulse Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support HighToLowPulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low to High Output Pulse Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support LowToHighPulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Pulse Width Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support VariablePulseWidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (internal) Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support GateNone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Level Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support GateHighLevel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Level Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support GateLowLevel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Edge Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support GateHighEdge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Edge Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support GateLowEdge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level Change Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support GateLevel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock-Falling Edge Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support ClockFalling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock-Rising Edge Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support ClockRising</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Falling Edge Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support GateFalling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Rising Edge Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support GateRising</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupt-Driven Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support Interrupt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tachometers

Table 19: Tachometer Options

<table>
<thead>
<tr>
<th>DT9847 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachometer Falling Edges</td>
<td>SupportsFallingEdge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachometer Rising Edges</td>
<td>SupportsRisingEdge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachometer Stale Data Flag</td>
<td>SupportsStaleDataFlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

General Checklist ... 100
Technical Support ... 102
If Your Module Needs Factory Service 103
General Checklist

Should you experience problems using a DT9847 Series module, do the following:

1. Read all the documentation provided for your product, including any "Read this First" information.
2. Check the DT Omni software for any README files and ensure that you have used the latest installation and configuration information available.
3. Check that your system meets the requirements stated on page 30.
4. Check that you have installed your hardware properly using the instructions in Chapter 2.
5. Check that you have installed and configured the device driver for your module using the instructions in Chapter 2.
6. Check that you have wired your signals properly using the instructions in Chapter 3.
7. Search the Knowledgebase in the Support section of the web site (at www.mccdaq.com) for an answer to your problem.

If you still experience problems, try using the information in Table 20 to isolate and solve the problem. If you cannot identify the problem, refer to page 102.

Table 20: Troubleshooting Problems

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module is not recognized</td>
<td>You plugged the module into your computer before installing the device driver.</td>
<td>From the Control Panel > System > Hardware > Device Manager, uninstall any unknown devices (showing a yellow question mark). Then, run the DT Omni setup program to install the USB device drivers, and reconnect your USB module to the computer.</td>
</tr>
<tr>
<td>Module does not respond</td>
<td>The module configuration is incorrect.</td>
<td>Check the configuration of your device driver; see the instructions in Chapter 2.</td>
</tr>
<tr>
<td></td>
<td>The module is damaged.</td>
<td>Contact Data Translation for technical support; refer to page 102.</td>
</tr>
<tr>
<td>Intermittent operation</td>
<td>Loose connections or vibrations exist.</td>
<td>Check your wiring and tighten any loose connections or cushion vibration sources; see the instructions in Chapter 3.</td>
</tr>
<tr>
<td></td>
<td>The module is overheating.</td>
<td>Check environmental and ambient temperature; consult the module’s specifications on page 122 of this manual and the documentation provided by your computer manufacturer for more information.</td>
</tr>
<tr>
<td></td>
<td>Electrical noise exists.</td>
<td>Check your wiring and either provide better shielding or reroute unshielded wiring; see the instructions in Chapter 3.</td>
</tr>
</tbody>
</table>
Table 20: Troubleshooting Problems (cont.)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device failure error reported</td>
<td>The DT9847 Series module cannot communicate with the Microsoft bus driver or a problem with the bus driver exists.</td>
<td>Check your cabling and wiring and tighten any loose connections; see the instructions in Chapter 3.</td>
</tr>
<tr>
<td></td>
<td>The DT9847 Series module was removed while an operation was being performed.</td>
<td>Ensure that your module is properly connected; see the instructions in Chapter 2.</td>
</tr>
<tr>
<td>Data appears to be invalid</td>
<td>An open connection exists.</td>
<td>Check your wiring and fix any open connections; see the instructions in Chapter 3.</td>
</tr>
<tr>
<td></td>
<td>A transducer is not connected to the channel being read.</td>
<td>Check the transducer connections; see the instructions in Chapter 3.</td>
</tr>
<tr>
<td></td>
<td>The module is set up for differential inputs while the transducers are wired as single-ended inputs or vice versa.</td>
<td>Check your wiring and ensure that what you specify in software matches your hardware configuration; see the instructions in Chapter 3.</td>
</tr>
<tr>
<td></td>
<td>The module is out of calibration.</td>
<td>DT9847 Series modules are calibrated at the factory. If you want to readjust the calibration of the analog input or analog output circuitry, refer to Chapter 8.</td>
</tr>
<tr>
<td>USB 2.0 is not recognized</td>
<td>Your operating system does not have the appropriate Service Pack installed.</td>
<td>Ensure that you load the appropriate Windows Service Pack. If you are unsure of whether you are using USB 2.0 or USB 1.1, run the Open Layers Control Panel applet, described in Chapter 2.</td>
</tr>
<tr>
<td></td>
<td>Standby mode is enabled on your PC.</td>
<td>For some PCs, you may need to disable standby mode on your system for proper USB 2.0 operation. Consult Microsoft for more information.</td>
</tr>
</tbody>
</table>
Technical Support

If you have difficulty using a DT9847 Series module, Data Translation’s Technical Support Department is available to provide technical assistance.

To request technical support, go to our web site at http://www.mccdaq.com and click on the Support link.

When requesting technical support, be prepared to provide the following information:

- Your product serial number
- The hardware/software product you need help on
- The version of the Omni software that you are using
- Your contract number, if applicable

If you are located outside the USA, contact your local distributor; see our web site (www.mccdaq.com) for the name and telephone number of your nearest distributor.
If Your Module Needs Factory Service

Most hardware models can be functionally tested, evaluated for repairs (if needed), and calibrated to factory specifications. An RMA# must be obtained from Applications Engineering in advance of sending any product back to Measurement Computing (Data Translation is a Measurement Computing company). Customers outside the USA must contact their local distributor for a return procedure. Calibration certificates for most analog models can be obtained for a fee (certificate must be requested at time of RMA# assignment).
Calibration

Using the Calibration Utility ... 107
Calibrating the Analog Input Subsystem ... 108
Calibrating the Analog Output Subsystem .. 110
DT9847 Series modules are calibrated at the factory and should not require calibration for initial use. We recommend that you check and, if necessary, readjust the calibration of the analog input and analog output circuitry every six months using the DT9847 Series Calibration Utility.

Note: Ensure that you installed the device driver for your module using the Omni software prior to using the calibration utility.

This chapter describes how to calibrate the analog input and output subsystems of a DT9847 Series module using the calibration utility.
Using the Calibration Utility

Start the DT9847 Series Calibration Utility as follows:

1. Click Start from the Task Bar.

2. For the DT9847 module, select Programs | Data Translation, Inc | Calibration | DT9847 Series Calibration Utility. The main window of the DT9847 Series Calibration Utility appears.

3. Select the module to calibrate, and then click OK.

Note: When you first run the DT9847 Series Calibration Utility, you may notice a delay before you can start using the utility. This is the configuration delay that is related to the sampling frequency, as described on page 66.

Once the calibration utility is running, you can calibrate the analog input circuitry (either automatically or manually), described on page 108, or the analog output circuitry of the module, described on page 110.
Calibrating the Analog Input Subsystem

This section describes how to use the calibration utility to calibrate the analog input subsystem of a DT9847 Series module.

DT9847 Series modules have separate calibration for each A/D input channel.

Warming up the Module

Before calibrating the analog input circuitry, ensure that the module has been powered on for at least one hour.

Connecting a Precision Voltage Source

To calibrate the analog input circuitry, you need to connect an external +9.3750 V precision voltage source to the DT9847 Series module. Connect the precision voltage source to the first channel you want to calibrate; for example, Analog In 0 (AD Ch0).

Using the Auto-Calibration Procedure

Auto-calibration is the easiest to use and is the recommended calibration method. To auto-calibrate the analog input subsystem, do the following:

1. Select the A/D Calibration tab of the calibration utility.
2. Under the Calibration Settings area of the window, select the sampling frequency, in Hertz, and the gain that you want to use.

Note: By default, this utility uses DC coupling with the current source disabled. This is the recommended setting for most users. While changing these settings is not advised for most users, users with unique applications can change these settings by clicking the Advanced button.

3. Under the Automatic Calibration area of the window, select the channel that you want to calibrate from the Type of Calibration drop-down list box, and then click the Start button.
 A message appears notifying you to verify that 0.000 V is applied to the channel.
4. Verify that the supplied voltage to your selected channel is 0.000 V, and then click OK. The offset value is calibrated. When the offset calibration is complete, a message appears notifying you to set the input voltage of the channel to +9.375 V.
5. Check that the supplied voltage to your selected channel is +9.375 V, and then click OK. The gain value is calibrated and a completion message appears.
6. Repeat these steps for each analog input channel on the module.
Using the Manual Calibration Procedure

If you want to manually calibrate the analog input circuitry instead of auto-calibrating it, do the following for each channel:

1. Select the **A/D Calibration** tab of the calibration utility.
2. Under the **Calibration Settings** area of the window, select the sampling frequency, in Hertz, and the gain that you want to use.

 Note: By default, this utility uses DC coupling with the current source disabled. This is the recommended setting for most users. While changing these settings is not advised for most users, users with unique applications can change these settings by clicking the **Advanced** button.

3. Under the Manual Calibration area of the window, select the channel that you want to calibrate, and then click the **Start** button.
4. Adjust the offset as follows:
 a. Verify that 0.000 V is applied to the channel that you want to calibrate. The current voltage reading for this channel is displayed in the AD Value box.
 b. Adjust the offset by entering values between 0 and 255 in the **Offset** edit box, or by clicking the up/down buttons until the AD Value is 0.000 V.
5. Adjust the gain as follows:
 a. Verify that +9.375 V is applied to the channel that you want to calibrate. The current voltage reading for this channel is displayed in the AD Value box.
 b. Adjust the gain by entering values between 0 and 255 in the **Gain** edit box, or by clicking the up/down buttons until the AD Value is 9.3750 V.
6. When you have finished calibrating the channel, click the **Stop** button.
7. Repeat these steps for each analog input channel on the module.

 Note: At any time, you can click **Restore Factory Settings** to reset the A/D calibration values to their original factory settings. This process will undo any auto or manual calibration settings.

Once you have finished this procedure, continue with “Calibrating the Analog Output Subsystem.”
Chapter 8

Calibrating the Analog Output Subsystem

To calibrate the analog output circuitry, you need to connect an external precision voltmeter to the analog output channels of the DT9847 Series module.

Do the following to calibrate the analog output circuitry:

1. Select the D/A Calibration tab of the calibration utility.
2. Under the Channel Selection area of the window, select the analog output channel of the DT9847 Series module to calibrate.
3. Connect an external precision voltmeter to the selected analog output channel.
4. In the DAC Output Voltage box, select 0 V.
5. Adjust the offset by entering values between 0 and 255 in the Offset edit box or by clicking the up/down buttons until the voltmeter reads 0 V.
6. In the DAC Output Voltage box, select 2.75 V.
7. Adjust the gain by entering values between 0 and 255 in the Gain edit box or by clicking the up/down buttons until the voltmeter reads 2.75 V.
8. Repeat steps 2 to 7 for each analog output channel on the module.

Note: At any time, you can click Restore Factory Settings to reset the D/A calibration values to their original factory settings. This process will undo any D/A calibration settings.

Once you have finished this procedure, the analog output circuitry is calibrated. To close the calibration utility, click the close box in the upper right corner of the window.
Specifications

Analog Input Specifications ... 112
Analog Output Specifications .. 117
Digital I/O Specifications ... 119
Trigger Specifications ... 120
Master Oscillator Specifications .. 121
Power, Physical, and Environmental Specifications 122
Regulatory Specifications .. 123
Connector Specifications .. 124
External Power Supply Specifications .. 125
Analog Input Specifications

Table 21 lists the specifications for the analog input subsystem on the DT9847 Series modules. Unless otherwise noted, specifications are typical at 25° C.

Table 21: Analog Input Subsystem Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9847 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of analog input channels</td>
<td></td>
</tr>
<tr>
<td>DT9847-1-1:</td>
<td>1, single-ended</td>
</tr>
<tr>
<td>DT9847-2-2:</td>
<td>2, single-ended</td>
</tr>
<tr>
<td>DT9847-3-1:</td>
<td>3, single-ended</td>
</tr>
<tr>
<td>Resolution</td>
<td>24 bits</td>
</tr>
<tr>
<td>Ranges and gains</td>
<td></td>
</tr>
<tr>
<td>Gain of 1:</td>
<td>±10 V</td>
</tr>
<tr>
<td>Gain of 10:</td>
<td>±1 V</td>
</tr>
<tr>
<td>A/D type</td>
<td>Delta Sigma</td>
</tr>
<tr>
<td>Data encoding</td>
<td>Offset binary</td>
</tr>
<tr>
<td>Maximum sample frequency</td>
<td>216 kHz</td>
</tr>
<tr>
<td>Minimum sample frequency</td>
<td>1 kHz</td>
</tr>
<tr>
<td>Group delay</td>
<td>63/sample rate, in seconds</td>
</tr>
<tr>
<td>ADC Delta Sigma filter(^a)</td>
<td></td>
</tr>
<tr>
<td>Passband, –3 dB:</td>
<td>0.4535 x sample frequency, Hz</td>
</tr>
<tr>
<td>Passband ripple, ±0.001 dB:</td>
<td>48 kHz</td>
</tr>
<tr>
<td>Passband ripple, ±0.003 dB:</td>
<td>96 kHz</td>
</tr>
<tr>
<td>Passband ripple, ±0.007 dB:</td>
<td>192 kHz</td>
</tr>
<tr>
<td>Stopband, –120 dB:</td>
<td>0.547 x sample frequency, Hz</td>
</tr>
<tr>
<td>Analog filter(^a)</td>
<td></td>
</tr>
<tr>
<td>Low pass cutoff:</td>
<td>500 kHz (+3 dB);</td>
</tr>
<tr>
<td>High pass cutoff, –3 dB (AC coupling):</td>
<td>1.6 MHz (–3 dB)</td>
</tr>
<tr>
<td>Channel-to-channel crosstalk(^b)</td>
<td>> ~110 dB with 50 (\Omega) termination</td>
</tr>
<tr>
<td>Input Signal = 10 kHz:</td>
<td>> ~105 dB with 1 k(\Omega) termination</td>
</tr>
<tr>
<td>Input impedance</td>
<td>1 M(\Omega) // 20 pF</td>
</tr>
<tr>
<td>Coupling</td>
<td>AC/DC (software-selectable per channel)</td>
</tr>
<tr>
<td>IEPE current source</td>
<td>4 mA ±0.5%</td>
</tr>
<tr>
<td>IEPE compliance voltage</td>
<td>18 V</td>
</tr>
<tr>
<td>IEPE current source noise DC to 1 kHz</td>
<td>5 nARMS</td>
</tr>
<tr>
<td>Feature</td>
<td>DT9847 Specifications</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>DC Accuracy</td>
<td></td>
</tr>
<tr>
<td>Offset error c</td>
<td>1.5 mV</td>
</tr>
<tr>
<td>Offset error temperature coefficient</td>
<td>(2 (\mu)V/° C x Gain) + 400 (\mu)V</td>
</tr>
<tr>
<td>Gain error</td>
<td></td>
</tr>
<tr>
<td>Gain of 1:</td>
<td>±0.02%</td>
</tr>
<tr>
<td>Gain of 10:</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Gain error temperature coefficient</td>
<td>150 ppm/° C</td>
</tr>
<tr>
<td>Dynamic Performance</td>
<td></td>
</tr>
<tr>
<td>Effective Number of Bits, ENOB (^d)</td>
<td>Gain of 1</td>
</tr>
<tr>
<td>(1 kHz input, 105.5 kSPS)</td>
<td>Gain of 10</td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>14.6 bits</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>15.6 bits</td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>14.9 bits</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>15.7 bits</td>
</tr>
<tr>
<td>Signal to Noise and Distortion Ratio, SINAD (^f)</td>
<td></td>
</tr>
<tr>
<td>(1 kHz input, 105.5 kSPS)</td>
<td></td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>89 dB</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>90 dB</td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>91 dB</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>90 dB</td>
</tr>
<tr>
<td>Signal to Noise Ratio, SNR (^g)</td>
<td></td>
</tr>
<tr>
<td>(1 kHz input, 105.5 kSPS)</td>
<td></td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>96 dB</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>91 dB</td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>95 dB</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>91 dB</td>
</tr>
<tr>
<td>Total Harmonic Distortion, THD (^h)</td>
<td></td>
</tr>
<tr>
<td>(1 kHz input, 105.5 kSPS)</td>
<td></td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>–90 dB</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>–96 dB</td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>–93 dB</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>–98 dB</td>
</tr>
<tr>
<td>Spurious Free Dynamic Range, SFDR (^i)</td>
<td></td>
</tr>
<tr>
<td>(1 kHz input, 105.5 kSPS)</td>
<td></td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>93 dBFS</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>104 dBFS</td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>96 dBFS</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>106 dBFS</td>
</tr>
<tr>
<td>Noise Floor</td>
<td></td>
</tr>
<tr>
<td>(50 (\Omega) input termination, 105.5 kSPS)</td>
<td></td>
</tr>
<tr>
<td>–1 dBFS input:</td>
<td>90 (\mu)VRMS</td>
</tr>
<tr>
<td>–6 dBFS input:</td>
<td>10 (\mu)VRMS</td>
</tr>
<tr>
<td>Overvoltage Protection</td>
<td></td>
</tr>
<tr>
<td>Overvoltage protection (power on/off)</td>
<td>±40 V</td>
</tr>
<tr>
<td>ESD protection</td>
<td></td>
</tr>
<tr>
<td>Arc:</td>
<td>8 kV</td>
</tr>
<tr>
<td>Contact:</td>
<td>4 kV</td>
</tr>
</tbody>
</table>

a. The total frequency response is the combined frequency response of the ADC Sigma Delta filter and the analog filter.
b. Channel 0 is the reference channel with a 20 V PP signal and a maximum sample rate of 216 kSamples/s.
c. Offset errors are referred to the input.
d. ENOB, SINAD, SNR, THD, and SFDR measurements were made with a 16384 point FFT with a minimum 4-term Blackman Harris window.
e. Effective Number of Bits (ENOB) is calculated from the SINAD value with adjustment for level below full-scale of the input signal.

\[
ENOB = \frac{(SINAD - 1.76 + IBFS)}{6.02}
\]

where, IBFS is a positive value in dB, representing the ratio of a full-scale signal to the input signal.

f. Signal to Noise and Distortion (SINAD) is the ratio of the RMS value of the input signal to the RMS sum of all other spectral components, excluding DC.

g. Signal to Noise Ratio (SNR) is the ratio of the RMS value of the input signal to the RMS sum of all other spectral components, excluding harmonics and DC.

h. Total Harmonic Distortion (THD) is the ratio of the RMS value of the input signal to the RMS sum of all harmonics.

i. Spurious Free Dynamic Range (SFDR) is the ratio of the RMS full-scale range to the RMS value of the largest peak spurious component, including harmonics.
Figure 28: Dynamic Performance of the DT9847 Series Modules Measured Using QuickDAQ

Figure shows the full system accuracy of the DT9847 Series module as measured by QuickDAQ. In this example, a −1 dB input signal is connected to the DT9847 Series module and is sampled at 216 kHz using a gain of 1. The effective number of bits (ENOB) is 14.62.
Figure 29 shows the result of vector averaging data in QuickDAQ (FFT package). Vector averaging performs mathematical operations in the complex domain. This process cancels non-coherent noise components while allowing coherent signal components to remain.

In this example, a −10 dB input signal is connected to the DT9847 Series and is sampled at 50 kHz. You can clearly see the harmonics pulled out of the noise; the noise floor is below 150 dB.
Analog Output Specifications

Table 22 lists the specifications for the analog output subsystem on the DT9847 Series modules. Unless otherwise noted, specifications are typical at 25°C.

Table 22: Analog Output Subsystem Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9847 Series Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of analog output channels</td>
<td>DT9847-1-1: 1, single-ended
DT9847-2-2: 2, single-ended
DT9847-3-1: 1, single-ended</td>
</tr>
<tr>
<td>Resolution</td>
<td>32 bits</td>
</tr>
<tr>
<td>D/A type</td>
<td>Delta Sigma</td>
</tr>
<tr>
<td>Output range</td>
<td>±3 V or ±10 V, software programmable<sup>a</sup></td>
</tr>
<tr>
<td>Data encoding</td>
<td>Offset binary</td>
</tr>
<tr>
<td>Minimum sample frequency</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Maximum sample frequency</td>
<td>216 kHz</td>
</tr>
<tr>
<td>Group delay (typical)</td>
<td>36/sample rate, in s</td>
</tr>
<tr>
<td>DAC Delta Sigma filter<sup>b</sup></td>
<td>Passband, –3 dB: 0.49 x sample frequency, Hz
Passband ripple, ±0.005 dB: 0.454 x sample frequency, Hz
Stopband: 0.546 x sample frequency, Hz
Stopband attenuation, –100 dB: sample frequency ≤ 44.1 kHz
Stopband attenuation, –95 dB: sample frequency ≤ 96 kHz
Stopband attenuation, –90 dB: sample frequency ≤ 192 kHz</td>
</tr>
<tr>
<td>Analog filter<sup>b</sup></td>
<td>250 kHz, 2-pole, low-pass Butterworth</td>
</tr>
<tr>
<td>Output current</td>
<td>±3 mA maximum load (3 V across 1 kΩ; 10 V across 3.3 kΩ)</td>
</tr>
<tr>
<td>Output FIFO</td>
<td>8 kSamples</td>
</tr>
<tr>
<td>Idle channel noise</td>
<td>±3 V range 15 μVRMS
±10 V range 30 μVRMS</td>
</tr>
<tr>
<td>Total Harmonic Distortion, THD<sup>c</sup></td>
<td>(216 kSPS)
−1 dBFS, 1 kHz output, 3.3 kΩ load: ±3 V range −102 dB
−6 dBFS, 1 kHz output, 3.3 kΩ load: −110 dB
−10 V range −106 dB
−110 dB</td>
</tr>
<tr>
<td>Spurious Free Dynamic Range, SFDR<sup>c</sup></td>
<td>(216 kSPS)
−1 dBFS, 1 kHz output, 3.3 kΩ load: ±3 V range 103 dB
−6 dBFS, 1 kHz output, 3.3 kΩ load: 107 dB
−10 V range 108 dB
115 dB</td>
</tr>
<tr>
<td>Offset error</td>
<td>±1 mV</td>
</tr>
<tr>
<td>Offset error temperature coefficient</td>
<td>±3 V range 100 μV/°C
±10 V range 130 μV/°C</td>
</tr>
<tr>
<td>Gain error</td>
<td>±1.0%</td>
</tr>
</tbody>
</table>
Table 22: Analog Output Subsystem Specifications (cont.)

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9847 Series Specifications</th>
</tr>
</thead>
</table>
| Gain error temperature coefficient | ±3 V range
30 ppm/°C | ±10 V range
55 ppm/°C |
| Power fault and reset | Goes to 0 V ±0.5 mV if the USB cable is removed, external power fails, USB power is reset, or the system is rebooted |
| ESD protection | |
| Arc: | 8 kV |
| Contact: | 4 kV |

a. Older versions of this module may support only the ±3 V range.
b. The total frequency response is the combined frequency response of the DAC Sigma Delta filter and the analog filter.
c. THD and SFDR measurements were made with a 16384 point FFT with a minimum 4-term Blackman Harris window.
Digital I/O Specifications

Table 23 lists the specifications for the digital I/O subsystems on the DT9847 Series modules.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of digital I/O lines</td>
<td>8 (4 in, 4 out)</td>
</tr>
<tr>
<td>Number of ports</td>
<td>2 (4 bits each)</td>
</tr>
<tr>
<td>Logic family</td>
<td>LVTTL (5 V tolerant)</td>
</tr>
<tr>
<td>Logic sense</td>
<td>Positive true</td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
</tr>
<tr>
<td>Input type:</td>
<td>Level-sensitive</td>
</tr>
<tr>
<td>Input logic load:</td>
<td>1 LVTTL</td>
</tr>
<tr>
<td>High input voltage:</td>
<td>2.0 V minimum</td>
</tr>
<tr>
<td>Low input voltage:</td>
<td>0.8 V maximum</td>
</tr>
<tr>
<td>Low input current:</td>
<td>0.4 mA maximum</td>
</tr>
<tr>
<td>Termination:</td>
<td>None</td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
</tr>
<tr>
<td>Fan out:</td>
<td>24 mA</td>
</tr>
<tr>
<td>High output:</td>
<td>2.0 V minimum</td>
</tr>
<tr>
<td>Low output:</td>
<td>0.8 V maximum</td>
</tr>
<tr>
<td>High output current:</td>
<td>–12 mA maximum</td>
</tr>
<tr>
<td>Low output current:</td>
<td>12 mA maximum</td>
</tr>
<tr>
<td>Clocked with sample clock</td>
<td>No</td>
</tr>
<tr>
<td>Software I/O selectable</td>
<td>No</td>
</tr>
</tbody>
</table>
Trigger Specifications

Table 24 lists the specifications for the trigger on the DT9847 Series modules.

Table 24: Trigger Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9847 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger sources</td>
<td></td>
</tr>
<tr>
<td>Internal software trigger:</td>
<td>Software-initiated</td>
</tr>
<tr>
<td>External digital trigger:</td>
<td>Software-selectable</td>
</tr>
<tr>
<td>Analog threshold trigger:</td>
<td>Software-selectable</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>External digital trigger</td>
<td>Edge-sensitive, rising- or falling-edge trigger</td>
</tr>
<tr>
<td></td>
<td>(software-selectable)</td>
</tr>
<tr>
<td>Input type:</td>
<td>Edge-sensitive, rising- or falling-edge trigger</td>
</tr>
<tr>
<td>Logic family:</td>
<td>edge-sensitive, rising- or falling-edge trigger</td>
</tr>
<tr>
<td>Input logic load:</td>
<td>(software-selectable)</td>
</tr>
<tr>
<td>Lower threshold:</td>
<td>LVTTL inputs</td>
</tr>
<tr>
<td>Upper threshold:</td>
<td>1 LVTTL</td>
</tr>
<tr>
<td>Hysteresis:</td>
<td>0.2 V</td>
</tr>
<tr>
<td>Input sink current:</td>
<td>33 μA</td>
</tr>
<tr>
<td>Minimum pulse width high/low:</td>
<td>1.3 μs</td>
</tr>
<tr>
<td>Maximum input signal:</td>
<td>±30 V</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog threshold trigger</td>
<td>Rising- or falling-edge threshold trigger on any analog</td>
</tr>
<tr>
<td></td>
<td>input channel (software-selectable)</td>
</tr>
<tr>
<td>Type:</td>
<td>Rising- or falling-edge threshold trigger on any analog</td>
</tr>
<tr>
<td>Threshold level:</td>
<td>input channel (software-selectable)</td>
</tr>
<tr>
<td>Hysteresis:</td>
<td>−10 V to +10 V @ gain of 1; ±1 V @ gain of 10</td>
</tr>
<tr>
<td></td>
<td>100 mV</td>
</tr>
<tr>
<td>Trigger delay</td>
<td>1 conversion period maximum</td>
</tr>
</tbody>
</table>
Master Oscillator Specifications

Table 25 lists the specifications for the master oscillator on the DT9847 Series modules.

Table 25: Master Oscillator Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>48 MHz(^a)</td>
</tr>
<tr>
<td>Accuracy at 25(^\circ) C</td>
<td>±30 ppm</td>
</tr>
<tr>
<td>Drift over temperature 0 to 70(^\circ) C (Total)</td>
<td>±50 ppm</td>
</tr>
<tr>
<td>Aging (first year)</td>
<td>±5 ppm</td>
</tr>
<tr>
<td>Maximum error (first year)</td>
<td>±85 ppm</td>
</tr>
</tbody>
</table>

\(^a\) The sample frequencies for the A/D and D/A subsystems are independently programmable and are derived from the same 48 MHz reference clock. Therefore, it is possible to establish a fixed relationship between the A/D and D/A subsystem sample frequencies, including setting them to the same frequency (30 kHz to 216 kHz). However, the subsystems are not designed to be synchronous with each other.
Power, Physical, and Environmental Specifications

Table 26 lists the power, physical, and environmental specifications for the DT9847 Series modules.

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9847 Series Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>DT9847-1-1 and DT9847-1-1-OEM:</td>
<td>5 V ±0.30 V @ 600 mA<sup>a</sup></td>
</tr>
<tr>
<td>DT9847-2-2, DT9847-2-2-OEM, DT9847-3-1, and DT9847-3-1-OEM:</td>
<td>+5 V to 24 V @ 5 W<sup>b</sup></td>
</tr>
<tr>
<td>Warm-up time</td>
<td>1 hour</td>
</tr>
<tr>
<td>Physical Dimensions - Enclosure</td>
<td></td>
</tr>
<tr>
<td>Length:</td>
<td>10.025 inches (254.63 mm)</td>
</tr>
<tr>
<td>Width:</td>
<td>4.170 inches (105.92 mm)</td>
</tr>
<tr>
<td>Height:</td>
<td>1.575 inches (40 mm)</td>
</tr>
<tr>
<td>Weight:</td>
<td>22.62 ounces (641.5 g)</td>
</tr>
<tr>
<td>Physical Dimensions - OEM (board only)</td>
<td></td>
</tr>
<tr>
<td>Length:</td>
<td>10.025 inches (254.63 mm)</td>
</tr>
<tr>
<td>Width:</td>
<td>3.937 inches (100 mm)</td>
</tr>
<tr>
<td>Height:</td>
<td>0.712 inches (18.08 mm)</td>
</tr>
<tr>
<td>Weight:</td>
<td>6.5 ounces (184.2 g)</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range:</td>
<td>0° C to 55° C</td>
</tr>
<tr>
<td>Storage temperature range:</td>
<td>−25° C to 85° C</td>
</tr>
<tr>
<td>Relative humidity:</td>
<td>To 95%, noncondensing</td>
</tr>
<tr>
<td>Altitude:</td>
<td>To 10,000 feet</td>
</tr>
</tbody>
</table>

^a The DT9847-1-1 requires a USB-Y cable (EP399) to ensure that adequate power is provided. Refer to page 33 for more information on connecting the USB-Y cable. The DT9847-1-1-OEM can be powered with USB power using the EP399 USB-Y cable or by using an external power supply connected to screw terminal block TB1 (this requires a jumper); refer to page 134 for more information.

^b To power the DT9847-2-2 and DT9847-3-1, connect the EP394 external power supply to the barrel power connector on the module. To power the DT9847-2-2 OEM and DT9847-3-1-OEM modules, connect the EP394 external power supply either to the barrel power connector on the module or to screw terminal block TB1 on the module, as described on page 136.
Specifications

Regulatory Specifications

The DT9847 Series is CE-compliant. Table 27 lists the regulatory specifications for the DT9847 Series modules.

Table 27: Regulatory Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9847 Series Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunity</td>
<td>EN61326-1:2006 Electrical Equipment for Measurement, Control, and Laboratory Use</td>
</tr>
<tr>
<td></td>
<td>EMC Requirements</td>
</tr>
<tr>
<td></td>
<td>EN61000-4-2:2009 Electrostatic Discharge (ESD) 4 kV contact discharge, 8 kV air discharge, 4 kV horizontal and vertical coupling planes</td>
</tr>
<tr>
<td></td>
<td>EN61000-4-3:2006 Radiated electromagnetic fields, 3 V/m, 80 to 1000 MHz; 3 V/m, 1.4 GHz to 2 GHz; 1 V/m, 2 GHz to 2.7 GHz</td>
</tr>
<tr>
<td></td>
<td>EN61000-4-4:2004 Electrical Fast Transient/Burst (EFT) 1 kV on data cables</td>
</tr>
<tr>
<td></td>
<td>EN61000-4-6:2009 Conducted immunity requirements, 3 Vrms on data cables 150 kHz to 80 MHz</td>
</tr>
<tr>
<td>RoHS (EU Directive 2002/95/EG)</td>
<td>Compliant (as of July 1st, 2006)</td>
</tr>
</tbody>
</table>
Connector Specifications

Table 28 lists the connector specifications for the DT9847 Series modules.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog I/O BNC connectors</td>
<td>TE Connectivity 5227161-9</td>
</tr>
<tr>
<td>External power supply</td>
<td>Jack on the module: Switchcraft #L722RA</td>
</tr>
<tr>
<td></td>
<td>Mating plug assembly, 0.08 inch: Switchcraft #S761K</td>
</tr>
<tr>
<td>Sync Bus connector (RJ45)</td>
<td>Molex part number 44661-0001</td>
</tr>
<tr>
<td>USB connector</td>
<td>TE Connectivity 292304-2</td>
</tr>
<tr>
<td>Digital I/O connector</td>
<td>Kycon K66X-E15S-N</td>
</tr>
</tbody>
</table>
Table 29 lists the specifications for the EP394 +5 V external power supply that is used with the DT9847 Series modules.

Table 29: External Power Supply (EP394) Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>FRIWO medical power supply (GPP 10)</td>
</tr>
<tr>
<td>Input voltage</td>
<td>100 to 240 V AC (±10%)</td>
</tr>
<tr>
<td>Input current</td>
<td>250 mA</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 to 60 Hz</td>
</tr>
<tr>
<td>Efficiency</td>
<td>80% typical at full load</td>
</tr>
<tr>
<td>Output voltage</td>
<td>5 V</td>
</tr>
<tr>
<td>Output current</td>
<td>1600 mA</td>
</tr>
<tr>
<td>Output ripple voltage</td>
<td>75 mVpp</td>
</tr>
<tr>
<td>Regulatory standards</td>
<td>UL, VDE, CE, Energy Star compliant</td>
</tr>
</tbody>
</table>
Connector Pin Assignments and LED Status Indicators

Digital I/O and External Trigger Connector 128
External USB Connector .. 129
External Power Connector ... 130
STP15 Screw Terminal Panel ... 131
LED Status Indicators .. 132
Digital I/O and External Trigger Connector

Figure 30 shows the layout of the 15-pin Digital I/O and External Trigger connector on the DT9847 Series modules.

![Figure 30: Layout of the Digital I/O and External Trigger Connector](image)

Table 30 lists the pin assignments for the Digital I/O and External Trigger connector on the DT9847 Series modules.

Table 30: Pin Assignments for the Digital I/O and External Trigger Connector on the DT9847 Series Modules

<table>
<thead>
<tr>
<th>Connector Pin Number</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital Input 0</td>
</tr>
<tr>
<td>2</td>
<td>Digital Input 1</td>
</tr>
<tr>
<td>3</td>
<td>Digital Input 2</td>
</tr>
<tr>
<td>4</td>
<td>Digital Input 3</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>Digital Output 0</td>
</tr>
<tr>
<td>7</td>
<td>Digital Output 1</td>
</tr>
<tr>
<td>8</td>
<td>Digital Output 2</td>
</tr>
<tr>
<td>9</td>
<td>No Connect</td>
</tr>
<tr>
<td>10</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>Digital Output 3</td>
</tr>
<tr>
<td>12</td>
<td>No Connect</td>
</tr>
<tr>
<td>13</td>
<td>External Trigger</td>
</tr>
<tr>
<td>14</td>
<td>No Connect</td>
</tr>
<tr>
<td>15</td>
<td>Ground</td>
</tr>
</tbody>
</table>
External USB Connector

Figure 31 shows the layout of the external USB connector on the DT9847 Series modules.

![Figure 31: Layout of the USB Connector](image)

Table 31 lists the pin assignments for the USB connector on the DT9847 Series modules.

Table 31: Pin Assignments for the USB Connector on the DT9847 Series Modules

<table>
<thead>
<tr>
<th>Connector Pin Number</th>
<th>Signal Description</th>
<th>Connector Pin Number</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USB +5 V</td>
<td>3</td>
<td>USB Data +</td>
</tr>
<tr>
<td>2</td>
<td>USB Data –</td>
<td>4</td>
<td>USB Ground</td>
</tr>
</tbody>
</table>
External Power Connector

Figure 32 shows the layout of the external +5 V to +24 VDC power connector (barrel connector) on the DT9847-2-2 and DT9847-3-1 modules.

Note: The DT9847-1-1 module operates on USB power; therefore, the external power connector is not provided on that module.

If you are using the DT9847-1-1-OEM, DT9847-2-2-OEM, or DT9847-3-1-OEM module, you can also power the module by connecting an external power supply to screw terminal block TB1; refer to Appendix C starting on page 133 for more information.

Table 32 lists the pin assignments for the external power connector on the DT9847-2-2 and DT9847-3-1 modules.

Table 32: Pin Assignments for the External Power Connector on the DT9847-2-2 and DT9847-3-1 Modules

<table>
<thead>
<tr>
<th>Connector Pin Number</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 VDC to +24 VDC</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
</tbody>
</table>
STP15 Screw Terminal Panel

The STP15 contains one 15-pin connector and two screw terminal blocks (TB1 and TB2). The 15-pin connector provides access to the signals from the Digital I/O and External Trigger connector on the DT9847 module.

Figure 33 shows the layout of the STP15 and lists the screw terminal assignments.

*These signal are not used on the DT9847 Series modules.

Figure 33: Layout of the STP15 Screw Terminal Panel

Note: The dark filled circles in Figure 33 represent holes that you can use to mount the STP15 on a DIN rail. To mount the STP15 on a DIN rail, you need two DIN rail mount adapters (Phoenix Contact part number 1201578), and four thread form screws (Bossard part number BN2724M3x8).
LED Status Indicators

The DT9847 Series has a two bi-color LEDs on the module, shown in Figure 34.

These LEDs are described in Table 33.

Table 33: LED Status Indicators on the DT9847 Series Modules

<table>
<thead>
<tr>
<th>LED</th>
<th>Color of the LED</th>
<th>Status Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB LED</td>
<td>Green</td>
<td>Module is powered</td>
</tr>
<tr>
<td>Blinking amber</td>
<td></td>
<td>Module is active (acquiring data from the analog input channels or streaming data to the analog output channels in continuous mode)a</td>
</tr>
<tr>
<td>Trigger LED</td>
<td>Green</td>
<td>Module is armed; it is waiting for an external digital trigger, threshold trigger, or Sync Bus trigger (the module must have been configured for one of these trigger types)</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>Module has been triggered</td>
</tr>
</tbody>
</table>

a. When only waveform analog output operations are in progress, this LED is not lit because this operation does not require USB activity.
Powering OEM Modules

Powering the DT9847-1-1-OEM Module .. 134
Powering the DT9847-2-2-OEM or DT9847-3-1-OEM Module 136
Powering the DT9847-1-1-OEM Module

The DT9847-1-1-OEM module can be powered with USB power using the EP399 USB-Y cable, as shown in page 32.

By default, jumper W3, shown in Figure 35, is installed on the module when it is shipped from the factory to select USB power. (This jumper is near the analog output connector on the module.)

![W3 Jumper](image)

Figure 35: Installing Jumper W3 to Select USB Power

Note: On revision 3 or newer of the PCB, this jumper is labelled W3. On earlier revisions of the PCB, this jumper is labelled W5.

Optionally, you can use an external +5 V power supply to power the DT9847-1-1-OEM module. To use external power, do the following:

1. Remove jumper W3 and install jumper W2 on the module, as shown in Figure 36. (This jumper is near the analog output connector on the module.)

![W2 Jumper](image)

Figure 36: Installing Jumper W2 to Select External Power

Note: On revision 3 or newer of the PCB, this jumper is labelled W2. On earlier revisions of the PCB, this jumper is labelled W4.

2. Connect an external power supply to the three-position screw terminal block (TB1) on the module, as shown in Figure 37. (TB1 is near the analog output connector on the module.)
On the DT9847-1-1-OEM, ensure that the maximum voltage of the external supply is +5 V ±0.30 V @ 600 mA. Higher voltages will destroy the module.

Figure 37: Connecting an External Power Supply to Screw Terminal TB1 on the Module
Powering the DT9847-2-2-OEM or DT9847-3-1-OEM Module

The DT9847-2-2-OEM or DT9847-3-1-OEM module must be externally powered with a +5 V to 24 V @ 5 W power supply.

You can connect an external power supply either to the barrel power connector on the module, as shown on page 31, or to the three-position screw terminal block (TB1) on the module, as shown in Figure 38.

Figure 38: Connecting an External Power Supply to Screw Terminal TB1 on the Module
Register-Level Programming

Writing to the EEPROM Register. ... 138
Writing to the EEPROM Register

If you want to change the default values that are defined in the Open Layers Control Panel programmatically, you can use the Data Acq SDK function `olDiagWriteReg` to write to the EEPROM register of the module.

On the DT9847 Series modules, the Open Layers Control Panel has controls for setting the following parameters, which are stored in 8 consecutive bytes of EEPROM:

- Channel 0, 1, and 2 coupling type. The values AC or DC are stored as constants for these controls.
- Channel 0, 1 and 2 current source. The values INTERNAL, EXTERNAL or DISABLED are stored as constants for these controls. Note that while the control panel has only two states (Enabled and Disabled), three states are actually defined, as follows:
 - INTERNAL = Enabled (used by the control panel)
 - EXTERNAL = Disabled
 - DISABLED = Disabled (used by the control panel)

These controls may also be “uninitialized” if for some reason, the module skipped the post-manufacturing initialization process.

To access the storage locations programmatically, use the `olDiagReadReg()` and `olDiagWriteReg()` functions. The following code shows the location of these controls in the register map:

```c
#define EEPROM_MEM_BASE 0x100000

// Coupling storage offsets relative to the base address for the
// three analog input channels
const EEPROM_OFFSET_COUPLING_0 = 0x0020;
const EEPROM_OFFSET_COUPLING_1 = 0x0021;
const EEPROM_OFFSET_COUPLING_2 = 0x0022;

// Current source storage offsets relative to the base address for
// the three analog input channels
const EEPROM_OFFSET_CURRENT_SOURCE_0 = 0x0024;
const EEPROM_OFFSET_CURRENT_SOURCE_1 = 0x0025;
const EEPROM_OFFSET_CURRENT_SOURCE_2 = 0x0026;
```

Note: `olDiagReadReg()` and `olDiagWriteReg()` require a ULONG value for the data parameter, but we are reading and writing only a single byte (last parameter).
// For example, to read the current source power-up default for
// channel 2, use the following code:
ULONG Channel_2_Current_Source;
OLSTATUS olStatus = olDiagReadReg(m_hDev, EEPROM_MEM_BASE +
 EEPROM_OFFSET_CURRENT_SOURCE_2, &Channel_2_Current_Source, 1);

// For example, to set the coupling power-up default for channel 0
// to AC, use the following code:
OLSTATUS olStatus = olDiagWriteReg(m_hDev, EEPROM_MEM_BASE +
 EEPROM_OFFSET_COUPLING_0, (ULONG) AC, 1);
Index

A
AC coupling 92
accessories 79, 80
 BNC DIN Rail Kit 22
 EP337 cable 21
 EP386 panel 22
 STP15 screw terminal panel 21
administrator privileges 36
aliasing 65
analog input
 calibrating 108
 channels 64
 conversion modes 66
 data format and transfer 71
 error conditions 71
 gain 64
 IEPE functions 65
 input range 64
 resolution 65
 sample clock 65
 single-ended configuration 40
 single-value operations 66
 single-values operations 67
 specifications 112
 triggers 69
 wiring 40
analog output
 calibrating 110
 channels 72
 clock sources 72
 continuous operations 74
 conversion modes 73
 data format and transfer 76
 error conditions 76
 gain 72
 ranges 72
 resolution 72
 single-value operations 73
 specifications 117
 waveform generation mode 73
 wiring 41
analog threshold trigger 69, 70, 76
applet, Open Layers Control Panel 101
application wiring
 analog inputs 40
 analog output 41
digital inputs and outputs 43

B
base clock frequency 95
BaseClockFrequency 95
binary data encoding 88
BNC DIN Rail Kit 22
buffers 88
 inprocess flush 88
 single wrap mode 88

C
C/C++ programs 20
cables, USB 32, 34
calibrating the module
 analog input subsystem 108
 analog output subsystem 110
 running the calibration utility 107
CGLDepth 89
channel type
 single-ended 89
channel-gain list depth 89
channels
 analog input 64
 analog output 72
digital I/O 77
 number of 89
clocks
 analog input 65
 analog output 72
 base frequency 95
 internal 95
 maximum external clock divider 95
 maximum throughput 95
 minimum external clock divider 95
 minimum throughput 95
 simultaneous 95
connecting signals
 analog inputs 40
 analog output 41
digital inputs and outputs 43
connecting to the host computer 32
connector J1 pin assignments 132
connectors
 external +5 V 130
external USB 129
continuous analog input
 post-trigger 87
continuous analog output 87
continuous counter/timer 87
continuous digital I/O 87
Control Panel applet 101
conversion modes
 continuous analog output 74
digital I/O 77
 single-value analog input 66
 single-value analog output 73
 single-values analog input 67
 waveform generation mode 73
conversion rate 67
counter/timer
 channels 89
clock sources 95
coupling type 65
current source 65, 92
customer service 103

D
DAQ Adaptor for MATLAB 20
data encoding 71, 76, 88
data flow modes
 continuous C/T 87
 continuous digital input 87
 continuous post-trigger 87
 single-value 87
 waveform stored in FIFO only 87
data format and transfer
 analog input 71
 analog output 76
DataAcq SDK 20
DC coupling 92
device driver 18
device drivers 36
Device Selection window 49
digital I/O 77
 lines 77
 operation modes 77
 single-value operations 77
 subsystem specifications 119
 wiring 43
digital trigger 69, 70, 75
DT9847 Series Calibration Utility 18
DT-Open Layers for .NET Class Library 20

E
EEPROM register 138
encoding data 71, 76
environmental specifications 122
EP337 cable 21
EP386 panel 22, 79, 80
errors
 analog input 71
 analog output 76
excitation current source 65
 available 92
 internal 92
expansion hub 34
external +5 V connector 130
external clock divider
 maximum 95
 minimum 95
external digital trigger 69, 70, 75
 negative TTL 93, 94
 positive TTL 93, 94
external USB connector 129

F
factory service 103
features 14
FIFO
 input 71
 output 74
 FifoSize 87
formatting data
 analog input 71
 analog output 76
frequency
 analog input operations 65, 73
 base clock 95
 internal A/D clock 95
 internal A/D sample clock 95
 internal C/T clock 95
 internal retrigger clock 88

gain 64
 actual available 89
 analog output 72
 number of 89
 programmable 89
 group delay 66, 73
H
hardware features 14
hot-swapping 32

I
IEPE features 65
IEPE support 92
inprocess buffers 88
input
channels 64
configuration, single-ended 40
ranges 64
resolution 65
input FIFO 71
internal clock 95
internal excitation current source 92
interrupts 87

J
J1 connector pin assignments 132
J5 connector 130
J6 connector 129
jumper
W2 134
W3 134

L
LabVIEW 20
LED 32, 34
LED status indicator 132
LEDs 132
legacy CPL elevated 36
lines, digital I/O 77
LV-Link 20

M
master device 50
master oscillator, specifications 121
MATLAB 20
MaxExtClockDivider 95
MaxFrequency 95
MaxMultiScanCount 88
MaxRetriggerFreq 88
MaxSingleEndedChannels 89
MinExtClockDivider 95
MinFrequency 95
MinRetriggerFreq 88
multiple modules, triggering 78
muting the output voltage 87

N
negative threshold trigger 93, 94
number of
 gains 89
 I/O channels 89
 resolutions 90
 scans per trigger 88
 single-ended channels 89
 voltage ranges 90
NumberOfChannels 89
NumberOfRanges 90
NumberOfResolutions 90
NumberOfSupportedGains 89
Nyquist Theorem 65

O
olDiagReadReg 138
olDiagWriteReg 138
Open Layers Control panel 36
Open Layers Control Panel applet 101
operation modes
 single-value analog input 66
 single-value analog output 73
 single-value digital I/O 77
 single-values analog input 67
 waveform generation 73
oscillator, specifications 121
output
 clock sources 72
 ranges 72
 output FIFO 74

P
physical specifications 122
pin assignments 132
ports, digital I/O 77
positive threshold trigger 93, 94
post-trigger acquisition mode 84
post-trigger scan count 94
power 14, 31, 34, 35
 specifications 122
power supply 31
powering OEM modules
 DT9847-1-1-OEM 134
 DT9847-2-2-OEM or DT9847-3-1-OEM 136
Index

Q
- Quick DataAcq application 20
- QuickDAQ 48
 - Advanced FFT Analysis option 19
 - Base version 18
 - FFT Analysis option 19

R
- ranges
 - analog input 64
 - analog output 72
 - number of 90
- recommendations for wiring 39
- reference trigger 70
 - analog threshold trigger 70
 - external digital trigger 70
 - Sync Bus 70
- register-level programming 138
- regulatory specifications 123
- resolution
 - analog input 65
 - analog output 72
 - available 90
 - number of 90
- retrigger clock frequency 88
- returning boards to the factory 103
- RMA 103

S
- sample clock 65
- scan count 94
- screw terminal block, TB1 135, 136
- screw terminal panel layout 44, 131
- SDK 20
- simultaneous clocking 95
- simultaneous sample-and-hold support 89
- simultaneous start list 87
- single buffer wrap mode 88
- single-ended channels 40, 89
 - number of 89
- single-value configuration 66
- single-value operations 87
 - analog output 73
 - digital I/O 77
- single-values configuration 67
- size, module 122
- software trigger 69, 75, 93
- specifications 111, 133
 - analog input 112
 - analog output 117
 - connector 124
 - digital I/O 119
 - environmental 122
 - external power supply 125
 - master oscillator 121
 - physical 122
 - power 122
 - regulatory 123
 - triggers 120
- start trigger
 - analog threshold trigger 69
 - external digital (TTL) trigger 69, 70
 - software 69
- start trigger sources 69
- stopping an operation 67, 75
- STP15 screw terminal panel 21, 43, 131
 - layout 44
- SupportedExcitationCurrentValues 92
- SupportedGains 89
- SupportedResolutions 90
- SupportedThresholdTriggerChannel 93, 94
- SupportedVoltageRanges 90
- SupportsACCoupling 92
- SupportsBinaryEncoding 88
- SupportsBuffering 88
- SupportsContinuous 87
- SupportsDCCoupling 92
- SupportsIEPE 92
- SupportsInProcessFlush 88
- SupportsInternalClock 95
- SupportsInternalExcitationCurrentSrc 92
- SupportsMute 87
- SupportsNegExternalTTLTrigger 93, 94
- SupportsNegThresholdTrigger 93, 94
- SupportsPosExternalTTLTrigger 93, 94
- SupportsPosThresholdTrigger 93, 94
- SupportsPostTriggerScanCount 94
- SupportsProgrammableGain 89
- SupportsSimultaneousClocking 95
- SupportsSimultaneousSampleHold 89
- SupportsSimultaneousStart 87
- SupportsSingleEnded 89
- SupportsSingleValue 87
- SupportsSoftwareTrigger 93
- SupportsSynchronization 87
- SupportsWaveformModeOnly 87
- SupportsWrapSingle 88
Sync Bus trigger 70
synchronization modes 87
SynchronizationMode 87
system requirements 30

T
TB1 screw terminal block 135, 136
technical support 102
threshold trigger 76
time channel 93, 94
negative 93, 94
threshold trigger, positive 93, 94
throughput
maximum 95
minimum 95
trademark and copyright information 2
transferring data
analog input 71
analog output 76
Trigger LED 33, 68, 132
triggered scan
number of scans per trigger 88
retrigger frequency 88
triggering acquisition on multiple modules 78
triggers
analog input 69
analog threshold 69, 76
external 69, 70, 75
external negative digital 93, 94
external positive digital 93, 94
negative threshold 93, 94
positive threshold 93, 94
software 69, 75, 93
specifications 120
troubleshooting
procedure 100
technical support 102
troubleshooting table 100
TTL trigger 69, 70, 75

V
Visual Basic for .NET programs 20
Visual C# programs 20
voltage ranges 64, 90
number of 90

W
W2 jumper 134
W3 jumper 134
warm-up time 39, 108
wiring signals 39
analog inputs 40
analog output 41
digital inputs and outputs 43
preparing 39
recommendations 39
writing programs in
C/C++ 20
Visual Basic .NET 20
Visual C# 20

U
unmuting the output voltage 87
unpacking 29
USB cable 32, 34
USB expansion hub 34
USB LED 33, 34, 68, 132